Abstract
In this work, a comparison between the performance of two- and three-stage cascaded thermoelectric generator (TEG) devices is analyzed based on a prescribed maximum hot side temperature of 973 K, an imposed maximum heat input of 505 W, and a fixed cold side temperature of 473 K. Half-Heusler is used as a thermoelectric (TE) material in the top higher temperature stage and skutterudite as a TE in the bottom lower temperature stage for the two-stage structure. Lead telluride is added in the middle stage to form the three-stage structure. Based on the prescribed constraints, the two-stage cascaded TEG is found to produce a power output of 42 W with an efficiency of 8.3%. The three-stage cascaded TEG produces a power output of 51 W with an efficiency of 10.2%. The three-stage cascaded TEG produces 21% more power than the two-stage does; however, if the system complexity, mechanical robustness, manufacturability, and/or cost of three-stage cascaded TEG outweigh the 21% percent power production increase, the two-stage TEG could be preferable.
Original language | English (US) |
---|---|
Pages (from-to) | 266-272 |
Number of pages | 7 |
Journal | Journal of Power Sources |
Volume | 365 |
DOIs | |
State | Published - 2017 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering