A modern pulse of ultrafast exhumation and diachronous crustal melting in the Nanga Parbat Massif

Victor E. Guevara, Andrew J. Smye, Mark J. Caddick, Michael P. Searle, Telemak Olsen, Lisa Whalen, Andrew R.C. Kylander-Clark, Michael J. Jercinovic, David J. Waters

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We combine monazite petrochronology with thermal modeling to evaluate the relative roles of crustal melting, surface denudation, and tectonics in facilitating ultrafast exhumation of the Nanga Parbat Massif in the western Himalayan syntaxis. Our results reveal diachronous melting histories between samples and a pulse of ultrafast exhumation (9 to 13 mm/year) that began ∼1 Ma and was preceded by several million years of slower, but still rapid, exhumation (2 to 5 mm/year). Recent studies show that an exhumation pulse of similar timing and magnitude occurred in the eastern Himalayan syntaxis. A synchronous exhumation pulse in both Himalayan syntaxes suggests that neither erosion by rivers and/or glaciers nor a pulse of crustal melting was a primary trigger for accelerated exhumation. Rather, our results, combined with those of recent studies in the eastern syntaxis, imply that larger-scale tectonic processes impose the dominant control on the current tempo of rapid exhumation in the Himalayan syntaxes.

Original languageEnglish (US)
Article numbereabm2689
JournalScience Advances
Volume8
Issue number31
DOIs
StatePublished - Aug 2022

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'A modern pulse of ultrafast exhumation and diachronous crustal melting in the Nanga Parbat Massif'. Together they form a unique fingerprint.

Cite this