TY - JOUR
T1 - A multivariate self-tuning controller for run-to-run process control under shift and trend disturbances
AU - Castillo, Enrique Del
PY - 1996
Y1 - 1996
N2 - Many manufacturing systems are controlled with PID-type controllers. In some industries, such as semiconductor manufacturing, specifications or changing conditions impose a need for adjusting such controllers on a run-to-run basis. This need has originated a collection of techniques called run-to-run process control. Self-tuning control, where model estimation is done on-line, has been shown to be a feasible tool for run-to-run control in single input-single output systems. This paper presents a self-tuning multiple input-multiple output controller for run to run control. The controller compensates for a variety of disturbances frequently found in semiconductor manufacturing, such as offsets or shifts and trends. The controller also compensates for autocorrelated responses or noise terms, for coupled responses, and for non-square systems (i.e., the number of inputs may be greater than the number of outputs). A sensitivity analysis is presented to show the performance of the controller under various system-noise combinations. A performance measure is developed to compare the behavior of the controller with that of a minimum variance multivariate controller. A multivariate EWMA monitoring chart is added to the controller as a deadband in order to trade-off the number of recipe (setpoint) changes against the variance of the outputs. This approach is contrasted with the classical strategy of trading-off input versus output variances.
AB - Many manufacturing systems are controlled with PID-type controllers. In some industries, such as semiconductor manufacturing, specifications or changing conditions impose a need for adjusting such controllers on a run-to-run basis. This need has originated a collection of techniques called run-to-run process control. Self-tuning control, where model estimation is done on-line, has been shown to be a feasible tool for run-to-run control in single input-single output systems. This paper presents a self-tuning multiple input-multiple output controller for run to run control. The controller compensates for a variety of disturbances frequently found in semiconductor manufacturing, such as offsets or shifts and trends. The controller also compensates for autocorrelated responses or noise terms, for coupled responses, and for non-square systems (i.e., the number of inputs may be greater than the number of outputs). A sensitivity analysis is presented to show the performance of the controller under various system-noise combinations. A performance measure is developed to compare the behavior of the controller with that of a minimum variance multivariate controller. A multivariate EWMA monitoring chart is added to the controller as a deadband in order to trade-off the number of recipe (setpoint) changes against the variance of the outputs. This approach is contrasted with the classical strategy of trading-off input versus output variances.
UR - http://www.scopus.com/inward/record.url?scp=0030394043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030394043&partnerID=8YFLogxK
U2 - 10.1080/15458830.1996.11770756
DO - 10.1080/15458830.1996.11770756
M3 - Article
AN - SCOPUS:0030394043
SN - 0740-817X
VL - 28
SP - 1011
EP - 1021
JO - IIE Transactions (Institute of Industrial Engineers)
JF - IIE Transactions (Institute of Industrial Engineers)
IS - 12
ER -