TY - JOUR
T1 - A necessary and sufficient condition to play games in quantum mechanical settings
AU - Özdemir, S. K.
AU - Shimamura, J.
AU - Imoto, N.
PY - 2007/2/28
Y1 - 2007/2/28
N2 - Quantum game theory is a multidisciplinary field which combines quantum mechanics with game theory by introducing non-classical resources such as entanglement, quantum operations and quantum measurement. By transferring two-player two-strategy (2 × 2) dilemma containing classical games into the quantum realm, dilemmas can be resolved in quantum pure strategies if entanglement is distributed between the players who use quantum operations. Moreover, players receive the highest sum of payoffs available in the game, which are otherwise impossible in classical pure strategies. Encouraged by the observation of rich dynamics of physical systems with many interacting parties and the power of entanglement in quantum versions of 2 × 2 games, it became generally accepted that quantum versions can be easily extended to N-player situations by simply allowing N-partite entangled states. In this article, however, we show that this is not generally true because the reproducibility of classical tasks in the quantum domain imposes limitations on the type of entanglement and quantum operators. We propose a benchmark for the evaluation of quantum and classical versions of games, and derive the necessary and sufficient conditions for a physical realization. We give examples of entangled states that can and cannot be used, and the characteristics of quantum operators used as strategies.
AB - Quantum game theory is a multidisciplinary field which combines quantum mechanics with game theory by introducing non-classical resources such as entanglement, quantum operations and quantum measurement. By transferring two-player two-strategy (2 × 2) dilemma containing classical games into the quantum realm, dilemmas can be resolved in quantum pure strategies if entanglement is distributed between the players who use quantum operations. Moreover, players receive the highest sum of payoffs available in the game, which are otherwise impossible in classical pure strategies. Encouraged by the observation of rich dynamics of physical systems with many interacting parties and the power of entanglement in quantum versions of 2 × 2 games, it became generally accepted that quantum versions can be easily extended to N-player situations by simply allowing N-partite entangled states. In this article, however, we show that this is not generally true because the reproducibility of classical tasks in the quantum domain imposes limitations on the type of entanglement and quantum operators. We propose a benchmark for the evaluation of quantum and classical versions of games, and derive the necessary and sufficient conditions for a physical realization. We give examples of entangled states that can and cannot be used, and the characteristics of quantum operators used as strategies.
UR - http://www.scopus.com/inward/record.url?scp=33847690817&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33847690817&partnerID=8YFLogxK
U2 - 10.1088/1367-2630/9/2/043
DO - 10.1088/1367-2630/9/2/043
M3 - Article
AN - SCOPUS:33847690817
SN - 1367-2630
VL - 9
JO - New Journal of Physics
JF - New Journal of Physics
M1 - 43
ER -