A new 3D automatic segmentation framework for accurate segmentation of prostate from DCE-MRI

A. Firjani, A. Elnakib, F. Khalifa, G. Gimel'Farb, M. Abo El-Ghar, J. Suri, A. Elmaghraby, A. El-Baz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

Prostate segmentation is an essential step in developing any noninvasive Computer-Assisted Diagnostic (CAD) system for the early diagnosis of prostate cancer using Magnetic Resonance Images (MRI). In this paper, a novel framework for 3D segmentation of the prostate region from Dynamic Contrast Enhancement MRI (DCE-MRI) is proposed. The framework is based on Maximum A Posteriori (MAP) estimate of a new log-likelihood function that consists of : (i) 1 st-order visual appearance descriptors of the DCE-MRI, (ii) a 3D spatially rotation-variant 2nd-order homogeneity descriptor, and (iii) a 3D prostate shape descriptor. The shape prior is learned from the co-aligned 3D segmented prostate data. The visual appearances of the object and its background are described with marginal gray-level distributions obtained by separating their mixture over prostate data. The spatial interactions between the prostate voxels are modeled by a 3D 2nd-order rotation-variant Markov-Gibbs Random Field (MGRF) of object/background labels with analytically estimated potentials. Experiments with in vivo prostate DCE-MRI confirm the robustness and accuracy of the proposed approach.

Original languageEnglish (US)
Title of host publication2011 8th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI'11
Pages1476-1479
Number of pages4
DOIs
StatePublished - 2011
Event2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11 - Chicago, IL, United States
Duration: Mar 30 2011Apr 2 2011

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Other

Other2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11
Country/TerritoryUnited States
CityChicago, IL
Period3/30/114/2/11

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'A new 3D automatic segmentation framework for accurate segmentation of prostate from DCE-MRI'. Together they form a unique fingerprint.

Cite this