TY - GEN
T1 - A new distributed electric propulsion aircraft simulation tool for coupled flight dynamics, free wake, and acoustic predictions
AU - Gan, Ze Feng
AU - Mukherjee, Bhaskar
AU - Theron, Jean Pierre
AU - Botre, Mrunali
AU - Brentner, Kenneth S.
AU - Greenwood, Eric
AU - Horn, Joseph F.
N1 - Publisher Copyright:
© 2021 by the Vertical Flight Society.
PY - 2021
Y1 - 2021
N2 - A major barrier to certification and public acceptance of emerging distributed electric propulsion (DEP) aircraft is their noise. Like conventional helicopters, accurate noise prediction of DEP aircraft requires accurate modeling of realistic flight dynamics and controls. Furthermore, aspects unique to DEP aircraft must be modeled, such as variable rotor speed for thrust control, and unsteady aerodynamics arising from rotor thrust control and aerodynamic interactions between rotors and the airframe. To address these needs, this paper describes the development and software coupling of a noise prediction system for DEP aircraft. This system is demonstrated for maneuvering flight simulations consisting of a roll attitude doublet in low speed forward flight, for two rotor thrust control schemes: variable rotor speed and variable collective pitch. Loading noise levels for this configuration generally exceeded thickness noise levels. For a single rotor, loading noise modulated with thrust, regardless of the cause of the time variation of loading (variable rotor speed or collective pitch). However, the range of modulation was greater for the variable rotor speed case than for variable pitch. Less modulation is observed in the total noise for all rotors, because the rotor thrusts must vary to balance the aircraft. Interference patterns are observed for the constant speed case due to coherent phase relations between the rotors, whereas the noise of the variable speed rotors does not add coherently.
AB - A major barrier to certification and public acceptance of emerging distributed electric propulsion (DEP) aircraft is their noise. Like conventional helicopters, accurate noise prediction of DEP aircraft requires accurate modeling of realistic flight dynamics and controls. Furthermore, aspects unique to DEP aircraft must be modeled, such as variable rotor speed for thrust control, and unsteady aerodynamics arising from rotor thrust control and aerodynamic interactions between rotors and the airframe. To address these needs, this paper describes the development and software coupling of a noise prediction system for DEP aircraft. This system is demonstrated for maneuvering flight simulations consisting of a roll attitude doublet in low speed forward flight, for two rotor thrust control schemes: variable rotor speed and variable collective pitch. Loading noise levels for this configuration generally exceeded thickness noise levels. For a single rotor, loading noise modulated with thrust, regardless of the cause of the time variation of loading (variable rotor speed or collective pitch). However, the range of modulation was greater for the variable rotor speed case than for variable pitch. Less modulation is observed in the total noise for all rotors, because the rotor thrusts must vary to balance the aircraft. Interference patterns are observed for the constant speed case due to coherent phase relations between the rotors, whereas the noise of the variable speed rotors does not add coherently.
UR - http://www.scopus.com/inward/record.url?scp=85108981512&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108981512&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85108981512
T3 - 77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021: The Future of Vertical Flight
BT - 77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021
PB - Vertical Flight Society
T2 - 77th Annual Vertical Flight Society Forum and Technology Display: The Future of Vertical Flight, FORUM 2021
Y2 - 10 May 2021 through 14 May 2021
ER -