A new generation of sodium chloride porogen for tissue engineering

Richard T. Tran, Elhum Naseri, Aleksey Kolasnikov, Xiaochun Bai, Jian Yang

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

Porogen leaching is a widely used and simple technique for the creation of porous scaffolds in tissue engineering. Sodium chloride (NaCl) is the most commonly used porogen, but the current grinding and sieving methods generate salt particles with huge size variations and cannot generate porogens in the submicron size range. We have developed a facile method based on the principles of crystallization to precisely control salt crystal sizes down to a few microns within a narrow size distribution. The resulting NaCl crystal size could be controlled through the solution concentration, crystallization temperature, and crystallization time. A reduction in solution temperature, longer crystallization times, and an increase in salt concentration resulted in an increase in NaCl crystal sizes due to the lowered solubility of the salt solution. The nucleation and crystallization technique provides superior control over the resulting NaCl size distribution (13.78 ± 1.18 μm), whereas the traditional grinding and sieving methods produced NaCl porogens 13.89 ± 12.49 μm in size. The resulting NaCl porogens were used to fabricate scaffolds with increased interconnectivity, porous microchanneled scaffolds, and multiphasic vascular grafts. This new generation of salt porogen provides great freedom in designing versatile scaffolds for various tissue-engineering applications.

Original languageEnglish (US)
Pages (from-to)335-344
Number of pages10
JournalBiotechnology and Applied Biochemistry
Volume58
Issue number5
DOIs
StatePublished - Sep 2011

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Molecular Medicine
  • Biomedical Engineering
  • Applied Microbiology and Biotechnology
  • Drug Discovery
  • Process Chemistry and Technology

Fingerprint

Dive into the research topics of 'A new generation of sodium chloride porogen for tissue engineering'. Together they form a unique fingerprint.

Cite this