TY - GEN
T1 - A new hierarchical technique for the multiscale modeling of carbon nanostructures
AU - Mahdavi, Arash
AU - Mockensturm, Eric M.
PY - 2005/12/1
Y1 - 2005/12/1
N2 - We present a new hierarchical modeling technique called the Consistent Atomic-scale Finite Element (CAFÉ) method [1]. Unlike traditional approaches for linking the atomic structure to its equivalent continuum [2-7], this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. This technique partitions atoms to masters and salves and reduces the total number of degrees of freedom by establishing kinematic constraints between them [5-6]. The Tersoff-Brenner interatomic potential [8] is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements (Figure 1b). In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model (Figure 2a, 2b). The stiffness of higher-rank elements is approximated using the stiffness of lower-rank elements and kinematic constraints. This process is consistent with the underlying atomic structure and, by refining the mesh, molecular dynamic results will be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multiscale methods [4-7], there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block (Figures 2a, 2b). In this method by introducing two independent field variables, the so-called inner displacement is taken into account (Fig. 3b). Applicability of the method is shown with several examples of deformation of carbon nanostructures such as graphene sheet, nanotube, and nanocone, subjected to different loads and boundary conditions.
AB - We present a new hierarchical modeling technique called the Consistent Atomic-scale Finite Element (CAFÉ) method [1]. Unlike traditional approaches for linking the atomic structure to its equivalent continuum [2-7], this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. This technique partitions atoms to masters and salves and reduces the total number of degrees of freedom by establishing kinematic constraints between them [5-6]. The Tersoff-Brenner interatomic potential [8] is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements (Figure 1b). In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model (Figure 2a, 2b). The stiffness of higher-rank elements is approximated using the stiffness of lower-rank elements and kinematic constraints. This process is consistent with the underlying atomic structure and, by refining the mesh, molecular dynamic results will be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multiscale methods [4-7], there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block (Figures 2a, 2b). In this method by introducing two independent field variables, the so-called inner displacement is taken into account (Fig. 3b). Applicability of the method is shown with several examples of deformation of carbon nanostructures such as graphene sheet, nanotube, and nanocone, subjected to different loads and boundary conditions.
UR - http://www.scopus.com/inward/record.url?scp=33645992765&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33645992765&partnerID=8YFLogxK
U2 - 10.1115/IMECE2005-82988
DO - 10.1115/IMECE2005-82988
M3 - Conference contribution
AN - SCOPUS:33645992765
SN - 079184224X
SN - 9780791842249
T3 - American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS
SP - 597
EP - 600
BT - American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS
T2 - 2005 ASME International Mecahnical Engineering Congress and Exposition, IMECE 2005
Y2 - 5 November 2005 through 11 November 2005
ER -