A new shape-based framework for the left ventricle wall segmentation from cardiac first-pass perfusion mri

F. Khalifa, G. M. Beache, A. Elnakib, H. Sliman, G. Gimel'Farb, K. C. Welch, A. El-Baz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

35 Scopus citations

Abstract

We propose a shape-based approach for the segmentation of the left ventricle (LV) wall on cardiac first-pass magnetic resonance imaging (FP-MRI) using level sets. To reduce the variabilities of the LV wall in FP-MRI, it is first imperative to co-align the time series images to account for the global and local motions of the heart. Therefore, we developed a two-step registration methodology that includes an affine-based registration followed by a local B-splines based alignment to maximize a similarity function that accounts for the first- and second-order normalized mutual information (NMI). Additionally, myocardial signal intensity varies with the agent transit, which makes it difficult to control the level set evolution using image intensities alone. Thus, we constrained the level set evolution using three features: a weighted probabilistic shape prior, the first-order pixel-wise image intensities, and a second-order Markov-Gibbs random field (MGRF) spatial interaction model. We tested our approach on 24 data sets in 8 infarction patients using the Dice similarity coefficient (DSC), comparing our approach to other shape-based segmentation approaches. We also tested the performance of our segmentation approach using the receiver operating characteristics (ROC). Our approach achieved a mean DSC value of 0.910±0.037 compared to other shape-based methods that achieved 0.862±0.045 and 0.844±0.047. Finally, the ROC analysis for our segmentation method showed the best performance, with area under the ROC curve of 0.92, while that for intensity showed the worst performance, with area under the ROC curve of 0.69.

Original languageEnglish (US)
Title of host publicationISBI 2013 - 2013 IEEE 10th International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro
Pages41-44
Number of pages4
DOIs
StatePublished - 2013
Event2013 IEEE 10th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2013 - San Francisco, CA, United States
Duration: Apr 7 2013Apr 11 2013

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Other

Other2013 IEEE 10th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2013
Country/TerritoryUnited States
CitySan Francisco, CA
Period4/7/134/11/13

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'A new shape-based framework for the left ventricle wall segmentation from cardiac first-pass perfusion mri'. Together they form a unique fingerprint.

Cite this