A non-intrusive technique for on-line shaft crack detection and tracking

Mitchell S. Lebold, Kenneth Maynard, Karl Reichard, Martin Trethewey, Jonathan Hasker, Clifford Lissenden, David Dobbins

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations


A non-intrusive torsional vibration method for monitoring and tracking small changes in crack growth of shafts is presented in this paper. This method resolves and tracks characteristic changes in the natural torsional vibration frequencies that are associated with shaft crack propagation. While this technique is being applied to reactor coolant pumps (RCPs) it is generally applicable to any type of rotating equipment, including drivelines, and can be applied to detecting and tracking changes in blade natural frequencies in gas or steam turbines. This technique was first developed on a laboratory scale rotor test bed to investigate shaft cracking detection techniques under controlled conditions. The test bed provided a mechanism to evaluate sensing technologies and algorithm development. For accurate knowledge of the crack characteristics (crack depth and front), a shaft was seeded with a crack which was then propagated using a three-point bending process. Following each crack growth step, the specimen was evaluated using ultrasonic inspection techniques for crack characterization. After inspection, the shaft was inserted in the rotor test bed for analysis of shaft torsional vibration features. Following success in detecting and tracking crack growth on the test bed, this process was then take to a much bigger machine for verification. In the summer of 2004, the Applied Research Laboratory, along with other EPRI team members (Southern Co. and Jeumont Industrie), instrumented a 41% scale reactor coolant pump in Jeumont, France. On this platform, the team successfully detected and tracked a seeded cut through the shaft. The torsional vibration measurement method has demonstrated the ability to reliably detect changes in the first natural shaft frequency in the range of 0.1 to 0.2 Hz. This technique shows the potential to enable online structural health diagnostics and ultimately prevent shaft or even possibly blade failure due to crack growth.

Original languageEnglish (US)
Title of host publicationProceedings - 2005 IEEE Aerospace Conference
StatePublished - 2005
Event2005 IEEE Aerospace Conference - Big Sky, MT, United States
Duration: Mar 5 2005Mar 12 2005

Publication series

NameIEEE Aerospace Conference Proceedings
ISSN (Print)1095-323X


Other2005 IEEE Aerospace Conference
Country/TerritoryUnited States
CityBig Sky, MT

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Space and Planetary Science


Dive into the research topics of 'A non-intrusive technique for on-line shaft crack detection and tracking'. Together they form a unique fingerprint.

Cite this