TY - JOUR
T1 - A novel Ca2+ entry mechanism is turned on during growth arrest induced by Ca2+ pool depletion
AU - Ufret-Vincenty, Carmen A.
AU - Short, Alison D.
AU - Alfonso, Amparo
AU - Gill, Donald L.
PY - 1995/11/10
Y1 - 1995/11/10
N2 - Ca2+ pool depletion with Ca2+ pump blockers induces growth arrest of rapidly dividing DDT1MF-2 smooth muscle cells and causes cells to enter a stable, quiescent G0-like growth state (Short, A. D., Bian, J., Ghosh, T. K., Waldron, R. T., Rybak, S. L., and Gill, D. L. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 4986-4990). Here we reveal that induction of this quiescent growth state with the Ca2+ pump blocker, thapsigargin, is correlated with the appearance of a novel caffeine-activated Ca2+ influx mechanism. Ca2+ influx through this mechanism is clearly distinct from and additive with Ca2+ entry through store-operated channels (SOCs). Whereas SOC-mediated entry is activated seconds after Ca2+ pool release, caffeine-sensitive influx requires at least 30 min of pool emptying. Although activated in the 1-10 mM caffeine range, this mechanism has clearly distinct methylxanthine specificity from ryanodine receptors and is not modified by ryanodine. It is also unaffected by the Ca2+ channel blockers SKF96365 or verapamil and is independent of modifiers of cyclic nucleotide levels. Growth arrest by thapsigargin-induced Ca2+ pool depletion can be reversed by treatment with 20% serum (Waldron, R. T., Short, A. D., Meadows, J. J., Ghosh, T. K., and Gill, D. L. (1994) J. Biol. Chem. 269, 11927-11933). The serum-induced return of functional Ca2+ pools and reentry of cells into the cell cycle correlates exactly with the disappearance of the caffeine-sensitive Ca2+ influx mechanism. Therefore, appearance and function of this novel Ca2+ entry mechanism are closely tied to Ca2+ pool function and cell growth state and may provide an important means for modifying exit from or entry into the cell cycle.
AB - Ca2+ pool depletion with Ca2+ pump blockers induces growth arrest of rapidly dividing DDT1MF-2 smooth muscle cells and causes cells to enter a stable, quiescent G0-like growth state (Short, A. D., Bian, J., Ghosh, T. K., Waldron, R. T., Rybak, S. L., and Gill, D. L. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 4986-4990). Here we reveal that induction of this quiescent growth state with the Ca2+ pump blocker, thapsigargin, is correlated with the appearance of a novel caffeine-activated Ca2+ influx mechanism. Ca2+ influx through this mechanism is clearly distinct from and additive with Ca2+ entry through store-operated channels (SOCs). Whereas SOC-mediated entry is activated seconds after Ca2+ pool release, caffeine-sensitive influx requires at least 30 min of pool emptying. Although activated in the 1-10 mM caffeine range, this mechanism has clearly distinct methylxanthine specificity from ryanodine receptors and is not modified by ryanodine. It is also unaffected by the Ca2+ channel blockers SKF96365 or verapamil and is independent of modifiers of cyclic nucleotide levels. Growth arrest by thapsigargin-induced Ca2+ pool depletion can be reversed by treatment with 20% serum (Waldron, R. T., Short, A. D., Meadows, J. J., Ghosh, T. K., and Gill, D. L. (1994) J. Biol. Chem. 269, 11927-11933). The serum-induced return of functional Ca2+ pools and reentry of cells into the cell cycle correlates exactly with the disappearance of the caffeine-sensitive Ca2+ influx mechanism. Therefore, appearance and function of this novel Ca2+ entry mechanism are closely tied to Ca2+ pool function and cell growth state and may provide an important means for modifying exit from or entry into the cell cycle.
UR - http://www.scopus.com/inward/record.url?scp=0028972236&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028972236&partnerID=8YFLogxK
M3 - Article
C2 - 7592918
AN - SCOPUS:0028972236
SN - 0021-9258
VL - 270
SP - 26790
EP - 26793
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 45
ER -