TY - JOUR
T1 - A novel hierarchical later process model
T2 - Evaluating latent sources of variation in reaction times of adult daily smokers
AU - Roberts, Nicole J.
AU - Oravecz, Zita
AU - Sprague, Briana N.
AU - Geier, Charles F.
N1 - Funding Information:
NR received funding by the National Institute on Drug Abuse/Penn State Prevention & Methodology Trainee (T32DA017629-34) grant, and funding by the USDA 2011-6700-67001-30017 Childhood Obesity Prevention Training Program while working on this project. BS was supported by the Joseph and Jean Britton Fellowship through the Pennsylvania State University Center for Healthy Aging; additional support was provided through the Kligman Graduate Fellowship. Computations for this research were performed on the Pennsylvania State University's Institute for CyberScience Advanced CyberInfrastructure (ICS-ACI). CG was supported by the Dr. Frances Keesler Graham Early Career Professorship in Developmental Neuroscience.
Funding Information:
NR received funding by the National Institute on Drug Abuse/ Penn State Prevention & Methodology Trainee (T32DA017629-34) grant, and funding by the USDA 2011-6700-67001-30017 Childhood Obesity Prevention Training Program while working on this project. BS was supported by the Joseph and Jean Britton Fellowship through the Pennsylvania State University Center for Healthy Aging; additional support was provided through the Kligman Graduate Fellowship. Computations for this research were performed on the Pennsylvania State University’s Institute for CyberScience Advanced CyberInfrastructure (ICS-ACI). CG was supported by the Dr. Frances Keesler Graham Early Career Professorship in Developmental Neuroscience.
Publisher Copyright:
Copyright © 2019 Roberts, Oravecz, Sprague and Geier. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
PY - 2019
Y1 - 2019
N2 - Reaction time data from cognitive tasks continue to be a key way to assess decision-making in various contexts to better understand addiction. The goal of this paper is twofold: to introduce a nuanced modeling approach for reaction time data and to demonstrate the novel insights it can provide into the decision processes of nicotine-dependent individuals in different contexts. We focus on the Linear Approach to Threshold with Ergodic Rate (LATER) model, which is a cognitive process model that describes reaction time data in terms of two distinct aspects of cognitive functioning: speed of information accumulation (“accretion”) and threshold amount of information needed prior to execution (“caution”). We introduce a novel hierarchical extension to the LATER model to simultaneously account for differences across persons and experimental conditions, both in the accretion and caution parameters. This approach allows for the inclusion of person-specific predictor variables to explain between-person variation in terms of accretion and caution together with condition-specific predictors to model experimental condition manipulations. To highlight the usefulness of this model, we analyze reaction time data from a study on adult daily cigarette smokers. Participants performed a monetary incentivized Go/No-Go task during two testing sessions, once while following their typical smoking patterns and again following 12 h of verified smoking abstinence. Our main results suggest that regardless of trial type, smokers in a period of abstinence have faster accretion rates, and lower caution thresholds relative to smoking as usual.
AB - Reaction time data from cognitive tasks continue to be a key way to assess decision-making in various contexts to better understand addiction. The goal of this paper is twofold: to introduce a nuanced modeling approach for reaction time data and to demonstrate the novel insights it can provide into the decision processes of nicotine-dependent individuals in different contexts. We focus on the Linear Approach to Threshold with Ergodic Rate (LATER) model, which is a cognitive process model that describes reaction time data in terms of two distinct aspects of cognitive functioning: speed of information accumulation (“accretion”) and threshold amount of information needed prior to execution (“caution”). We introduce a novel hierarchical extension to the LATER model to simultaneously account for differences across persons and experimental conditions, both in the accretion and caution parameters. This approach allows for the inclusion of person-specific predictor variables to explain between-person variation in terms of accretion and caution together with condition-specific predictors to model experimental condition manipulations. To highlight the usefulness of this model, we analyze reaction time data from a study on adult daily cigarette smokers. Participants performed a monetary incentivized Go/No-Go task during two testing sessions, once while following their typical smoking patterns and again following 12 h of verified smoking abstinence. Our main results suggest that regardless of trial type, smokers in a period of abstinence have faster accretion rates, and lower caution thresholds relative to smoking as usual.
UR - http://www.scopus.com/inward/record.url?scp=85069787973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069787973&partnerID=8YFLogxK
U2 - 10.3389/fpsyt.2019.00474
DO - 10.3389/fpsyt.2019.00474
M3 - Article
C2 - 31333517
AN - SCOPUS:85069787973
SN - 1664-0640
VL - 10
JO - Frontiers in Psychiatry
JF - Frontiers in Psychiatry
IS - JULY
M1 - 474
ER -