TY - JOUR
T1 - A Novel "Molecular Tweezer" Inhibitor of α-Synuclein Neurotoxicity in Vitro and in Vivo
AU - Prabhudesai, Shubhangi
AU - Sinha, Sharmistha
AU - Attar, Aida
AU - Kotagiri, Aswani
AU - Fitzmaurice, Arthur G.
AU - Lakshmanan, Ravi
AU - Ivanova, Magdalena I.
AU - Loo, Joseph A.
AU - Klärner, Frank Gerrit
AU - Schrader, Thomas
AU - Stahl, Mark
AU - Bitan, Gal
AU - Bronstein, Jeff M.
N1 - Funding Information:
This work was supported by grants from The Levine Foundation, National Institute of Environmental Sciences (NIEHS) (1R21ES16446-1A2 and 1P01ES016732-01), Veterans Administration Healthcare System (SW PADRECC), American Health Assistance Foundation (A2008-350), UCLA Jim Easton Consortium for Alzheimer’s Drug Discovery and Biomarker Development, and Team Parkinson/Parkinson Alliance. We thank Dr. Sharon Li for her technical support. Full conflict of interest disclosure is available in the electronic supplementary material for this article.
PY - 2012/4
Y1 - 2012/4
N2 - Summary: Aggregation of α-synuclein (α-syn) is implicated as being causative in the pathogenesis of Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. Despite several therapies that improve symptoms in these disorders, none slow disease progression. Recently, a novel "molecular tweezer" (MT) termed CLR01 has been described as a potent inhibitor of assembly and toxicity of multiple amyloidogenic proteins. Here we investigated the ability of CLR01 to inhibit assembly and toxicity of α-syn. In vitro, CLR01 inhibited the assembly of α-syn into β-sheet-rich fibrils and caused disaggregation of pre-formed fibrils, as determined by thioflavin T fluorescence and electron microscopy. α-Syn toxicity was studied in cell cultures and was completely mitigated by CLR01 when α-syn was expressed endogenously or added exogenously. To determine if CLR01 was also protective in vivo, we used a novel zebrafish model of α-syn toxicity (α-syn-ZF), which expresses human, wild-type α-syn in neurons. α-Syn-ZF embryos developed severe deformities due to neuronal apoptosis and most of them died within 48 to 72 h. CLR01 added to the water significantly improved zebrafish phenotype and survival, suppressed α-syn aggregation in neurons, and reduced α-syn-induced apoptosis. α-Syn expression was found to inhibit the ubiquitin proteasome system in α-syn-ZF neurons, resulting in further accumulation of α-syn. Treatment with CLR01 almost completely mitigated the proteasome inhibition. The data suggest that CLR01 is a promising therapeutic agent for the treatment of Parkinson's disease and other synucleinopathies.
AB - Summary: Aggregation of α-synuclein (α-syn) is implicated as being causative in the pathogenesis of Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. Despite several therapies that improve symptoms in these disorders, none slow disease progression. Recently, a novel "molecular tweezer" (MT) termed CLR01 has been described as a potent inhibitor of assembly and toxicity of multiple amyloidogenic proteins. Here we investigated the ability of CLR01 to inhibit assembly and toxicity of α-syn. In vitro, CLR01 inhibited the assembly of α-syn into β-sheet-rich fibrils and caused disaggregation of pre-formed fibrils, as determined by thioflavin T fluorescence and electron microscopy. α-Syn toxicity was studied in cell cultures and was completely mitigated by CLR01 when α-syn was expressed endogenously or added exogenously. To determine if CLR01 was also protective in vivo, we used a novel zebrafish model of α-syn toxicity (α-syn-ZF), which expresses human, wild-type α-syn in neurons. α-Syn-ZF embryos developed severe deformities due to neuronal apoptosis and most of them died within 48 to 72 h. CLR01 added to the water significantly improved zebrafish phenotype and survival, suppressed α-syn aggregation in neurons, and reduced α-syn-induced apoptosis. α-Syn expression was found to inhibit the ubiquitin proteasome system in α-syn-ZF neurons, resulting in further accumulation of α-syn. Treatment with CLR01 almost completely mitigated the proteasome inhibition. The data suggest that CLR01 is a promising therapeutic agent for the treatment of Parkinson's disease and other synucleinopathies.
UR - http://www.scopus.com/inward/record.url?scp=84859708060&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859708060&partnerID=8YFLogxK
U2 - 10.1007/s13311-012-0105-1
DO - 10.1007/s13311-012-0105-1
M3 - Article
C2 - 22373667
AN - SCOPUS:84859708060
SN - 1933-7213
VL - 9
SP - 464
EP - 476
JO - Neurotherapeutics
JF - Neurotherapeutics
IS - 2
ER -