TY - JOUR
T1 - A petiole-galling insect herbivore decelerates leaf lamina litter decomposition rates
AU - Frost, Christopher J.
AU - Dean, Jennifer M.
AU - Smyers, Erica C.
AU - Mescher, Mark C.
AU - Carlson, John E.
AU - De Moraes, Consuelo M.
AU - Tooker, John F.
PY - 2012/6
Y1 - 2012/6
N2 - Herbivore-mediated changes in leaf-litter chemistry are often considered responsible for altering litter decomposition rates, but such chemical changes often co-occur with other factors such as physical alteration of leaf material that also influence decomposition rates. We attempted to disentangle these effects using the poplar petiole gall moth (Ectoedemia populella Brusk), which forms galls on petioles at the base of the leaf lamina but does not alter leaf morphology. Thus, differences in leaf decomposition rates between galled and ungalled leaves should be explained by gall-mediated changes in leaf chemistry. 2.Petiole galling decelerated leaf lamina litter decomposition in two Populus host species, but in temporally distinct ways. In Populus granidentata, galling decelerated decomposition by 7% after 4months. After 12 and 18months, Populus tremuloides litter decomposition rates were 12% and 17% lower, respectively, in lamina tissue whose petiole had been galled relative to ungalled. On average, the petiole galler increased leaf lamina nitrogen concentrations by 17%, decreased tannin concentrations from 37% to 53% and decreased tannin-binding capacity by 11% and 37% in P. grandidentata and P. tremuloides, respectively. These changes would be expected to increase, rather than decrease, decomposition rates. 3.Unlike other insect herbivores guilds that have variable effects on litter decomposition in direction and magnitude, all gall insects studied to date have decelerated leaf-litter decomposition. This consistent effect of galling on decomposition provides a framework for deciphering a fundamental aspect of insect herbivory on a critical ecosystem process. 4.We used a gall-inducing moth with a distinctive natural history to confirm the role of herbivore-mediated litter chemistry in leaf-litter decomposition dynamics. Moreover, we advance the hypothesis that gall-induced defensive manipulations that protect a host plant from injury by other herbivores lead to decelerated litter decomposition.
AB - Herbivore-mediated changes in leaf-litter chemistry are often considered responsible for altering litter decomposition rates, but such chemical changes often co-occur with other factors such as physical alteration of leaf material that also influence decomposition rates. We attempted to disentangle these effects using the poplar petiole gall moth (Ectoedemia populella Brusk), which forms galls on petioles at the base of the leaf lamina but does not alter leaf morphology. Thus, differences in leaf decomposition rates between galled and ungalled leaves should be explained by gall-mediated changes in leaf chemistry. 2.Petiole galling decelerated leaf lamina litter decomposition in two Populus host species, but in temporally distinct ways. In Populus granidentata, galling decelerated decomposition by 7% after 4months. After 12 and 18months, Populus tremuloides litter decomposition rates were 12% and 17% lower, respectively, in lamina tissue whose petiole had been galled relative to ungalled. On average, the petiole galler increased leaf lamina nitrogen concentrations by 17%, decreased tannin concentrations from 37% to 53% and decreased tannin-binding capacity by 11% and 37% in P. grandidentata and P. tremuloides, respectively. These changes would be expected to increase, rather than decrease, decomposition rates. 3.Unlike other insect herbivores guilds that have variable effects on litter decomposition in direction and magnitude, all gall insects studied to date have decelerated leaf-litter decomposition. This consistent effect of galling on decomposition provides a framework for deciphering a fundamental aspect of insect herbivory on a critical ecosystem process. 4.We used a gall-inducing moth with a distinctive natural history to confirm the role of herbivore-mediated litter chemistry in leaf-litter decomposition dynamics. Moreover, we advance the hypothesis that gall-induced defensive manipulations that protect a host plant from injury by other herbivores lead to decelerated litter decomposition.
UR - http://www.scopus.com/inward/record.url?scp=84861228131&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861228131&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2435.2012.01986.x
DO - 10.1111/j.1365-2435.2012.01986.x
M3 - Article
AN - SCOPUS:84861228131
SN - 0269-8463
VL - 26
SP - 628
EP - 636
JO - Functional Ecology
JF - Functional Ecology
IS - 3
ER -