A power-management ASIC with Q-modulation capability for efficient inductive power transmission

Mehdi Kiani, Byunghun Lee, Pyungwoo Yeon, Maysam Ghovanloo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

28 Scopus citations

Abstract

A wide variety of applications can benefit from near-field wireless power transfer using coupled inductive links, such as wireless sensors and implantable microelectronic devices. The use of inductive power transmission is expected to see an explosive growth over the next decade as engineers try to cut the last cord from mobile electronics, small home appliances, and even electric vehicles [1]. The inductive link power transfer efficiency (PTE) is highly dependent of the loading of the receiver (Rx) coil, referred to as RL. As shown in Fig. 12.7.1a, magnetic resonance-based power transmission in the form of a 3-coil link has been proposed to maximize PTE for any given RL by transforming it to an optimal load, using k34 variable [2,3]. Alternatively, an off-chip matching circuit has been used to transform RL [4]. However, these methods need either an additional coil or a network of off-chip capacitors and inductors, which add to the size/cost of Rx. Moreover, in the above applications, RL can change drastically during operation and there is a need for Rx to dynamically compensate for a wide range of RL to maintain high PTE.

Original languageEnglish (US)
Title of host publication2015 IEEE International Solid-State Circuits Conference, ISSCC 2015 - Digest of Technical Papers
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages226-227
Number of pages2
ISBN (Electronic)9781479962235
DOIs
StatePublished - Mar 17 2015
Event2015 62nd IEEE International Solid-State Circuits Conference, ISSCC 2015 - Digest of Technical Papers - San Francisco, United States
Duration: Feb 22 2015Feb 26 2015

Publication series

NameDigest of Technical Papers - IEEE International Solid-State Circuits Conference
Volume58
ISSN (Print)0193-6530

Other

Other2015 62nd IEEE International Solid-State Circuits Conference, ISSCC 2015 - Digest of Technical Papers
Country/TerritoryUnited States
CitySan Francisco
Period2/22/152/26/15

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A power-management ASIC with Q-modulation capability for efficient inductive power transmission'. Together they form a unique fingerprint.

Cite this