TY - JOUR
T1 - A primal-dual algorithm with line search for general convex-concave saddle point problems
AU - Hamedani, Erfan Yazdandoost
AU - Aybat, Necdet Serhat
N1 - Publisher Copyright:
© 2021 Society for Industrial and Applied Mathematics
PY - 2021
Y1 - 2021
N2 - In this paper, we propose a primal-dual algorithm with a novel momentum term using the partial gradients of the coupling function that can be viewed as a generalization of the method proposed by Chambolle and Pock in [Math. Program., 159 (2016), pp. 253-287] for solving saddle point problems defined by a convex-concave function L (x, y) = f(x) + Φ (x, y) - h(y) with a general coupling term Φ (x, y) that is not assumed to be bilinear. Assuming ▽ xΦ (·, y) is Lipschitz for any fixed y, and ▽yΦ (·, ·) is Lipschitz, we show that the iterate sequence converges to a saddle point, and for any (x, y), we derive error bounds in terms of L (xk, y) - L (x, yk) for the ergodic sequence {xk, yk}. In particular, we show O (1/k) rate when the problem is merely convex in x. Furthermore, assuming Φ (x, ·) is linear for each fixed x and f is strongly convex, we obtain the ergodic convergence rate of O (1/k2)-we are not aware of another single-loop method in the related literature achieving the same rate when Φ is not bilinear. Finally, we propose a backtracking technique which does not require knowledge of Lipschitz constants yet ensures the same convergence results. We also consider convex optimization problems with nonlinear functional constraints, and we show that by using the backtracking scheme, the optimal convergence rate can be achieved even when the dual domain is unbounded. We tested our method against other state-of-the-art first-order algorithms for solving quadratically constrained quadratic programming (QCQP): in the first set of experiments, we considered QCQPs with synthetic data, and in the second set, we focused on QCQPs with real data originating from a variant of the linear regression problem with fairness constraints arising in machine learning.
AB - In this paper, we propose a primal-dual algorithm with a novel momentum term using the partial gradients of the coupling function that can be viewed as a generalization of the method proposed by Chambolle and Pock in [Math. Program., 159 (2016), pp. 253-287] for solving saddle point problems defined by a convex-concave function L (x, y) = f(x) + Φ (x, y) - h(y) with a general coupling term Φ (x, y) that is not assumed to be bilinear. Assuming ▽ xΦ (·, y) is Lipschitz for any fixed y, and ▽yΦ (·, ·) is Lipschitz, we show that the iterate sequence converges to a saddle point, and for any (x, y), we derive error bounds in terms of L (xk, y) - L (x, yk) for the ergodic sequence {xk, yk}. In particular, we show O (1/k) rate when the problem is merely convex in x. Furthermore, assuming Φ (x, ·) is linear for each fixed x and f is strongly convex, we obtain the ergodic convergence rate of O (1/k2)-we are not aware of another single-loop method in the related literature achieving the same rate when Φ is not bilinear. Finally, we propose a backtracking technique which does not require knowledge of Lipschitz constants yet ensures the same convergence results. We also consider convex optimization problems with nonlinear functional constraints, and we show that by using the backtracking scheme, the optimal convergence rate can be achieved even when the dual domain is unbounded. We tested our method against other state-of-the-art first-order algorithms for solving quadratically constrained quadratic programming (QCQP): in the first set of experiments, we considered QCQPs with synthetic data, and in the second set, we focused on QCQPs with real data originating from a variant of the linear regression problem with fairness constraints arising in machine learning.
UR - http://www.scopus.com/inward/record.url?scp=85106549637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85106549637&partnerID=8YFLogxK
U2 - 10.1137/18M1213488
DO - 10.1137/18M1213488
M3 - Article
AN - SCOPUS:85106549637
SN - 1052-6234
VL - 31
SP - 1299
EP - 1329
JO - SIAM Journal on Optimization
JF - SIAM Journal on Optimization
IS - 2
ER -