Abstract
Much of the recent effort in protein folding has focused on the possibility that residual structures in the unfolded state may provide an initiating site for protein folding. This hypothesis is difficult to test because of the weak stability and dynamic behavior of these structures. This problem has been simplified for intestinal fatty acid binding protein (IFABP) by incorporating fluorinated aromatic amino acids during synthesis in Escherichia coli. Only the labeled residues give signals by 19F NMR, and the 1D spectra can be assigned in both the native and unfolded states by site-directed mutagenesis. One of the two tryptophans (W82), one of the four tyrosines (Y70), and at least four of the eight phenylalanines (including F68 and F93) of IFABP are involved in a structure that is significantly populated at concentrations of urea that unfold the native structure by fluorescence and CD criteria. These residues are nonlocal in sequence and also contact each other in the native structure. Thus, a template of nativelike hydrophobic contacts in the unfolded state may serve as an initiating site for folding this β-sheet protein.
Original language | English (US) |
---|---|
Pages (from-to) | 2608-2617 |
Number of pages | 10 |
Journal | Biochemistry |
Volume | 45 |
Issue number | 8 |
DOIs | |
State | Published - Feb 28 2006 |
All Science Journal Classification (ASJC) codes
- Biochemistry