A selective two microphone acoustic intensity method

J. Bucheger, W. Trethewey, H. A. Evensen

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

A multiple input, two output model is proposed which enables the two microphone acoustic intensity method to decompose the intensity vector into contributions from individual sources, even when they are coupled and in close proximity within the measurement surface. By treating characteristic signals from each source as the inputs, and the sound pressure signals from the two closely spaced microphones as the outputs, the model's frequency response functions are developed from a least squares approximation. The cross spectrum between the two microphones can then be expressed as a function of the input signal spectra and the model's frequency response functions. By manipulating the model terms the selective cross spectrum associated with the radiation from each individual source can then be estimated. The selective cross spectrum is then processed via standard methods to obtain the acoustic intensity vector from each source. A series of laboratory experiments is summarized which demonstrates that the technique can accurately decompose the acoustic intensity vector from highly coherent sources (γ122 > 0·9) buried in background noise in a semireverberant environment, to within 1 dB of the directly measured intensities.

Original languageEnglish (US)
Pages (from-to)93-101
Number of pages9
JournalJournal of Sound and Vibration
Volume90
Issue number1
DOIs
StatePublished - Sep 8 1983

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Acoustics and Ultrasonics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A selective two microphone acoustic intensity method'. Together they form a unique fingerprint.

Cite this