TY - GEN
T1 - A Semi-distributed Access Control Management Scheme for Securing Cloud Environment
AU - Rizvi, Syed
AU - Mitchell, John
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/8/19
Y1 - 2015/8/19
N2 - Despite numerous advantages that cloud computing offer (e.g., Flexibility, elasticity, scalability, etc.), many potential clients are still hesitant to join the cloud due to their security and privacy concerns. Outsourcing the data to a cloud in a multitenant environment brings many security challenges including data leaks, threats, and malicious attacks. The cloud computing platform, virtual servers, and the provider's services are highly dynamic and diverse in nature, making the traditional access control mechanisms (e.g., Firewalls and VLAN etc.) less effective in controlling the unauthorized access to cloud's data and resources. Several access control policies and authorization system have been proposed in literature to defend against cloud security threats. Most of these systems are designed to work with one or more access control policies. However, little work has been done to develop generic access control architecture capable to work with most of the available access control policies. In this paper, we present a new access control architecture using a global resource management system (GRMS) to effectively handle both local and remote access requests. The introduction of GRMS makes our proposed architecture semi distributed at the expense of minimal request-response time. In addition, our proposed architecture works effectively with both peered access control module (PACM) and virtual resource manager (VRM) to protect and manage all resources and services of cloud providers from unauthorized access.
AB - Despite numerous advantages that cloud computing offer (e.g., Flexibility, elasticity, scalability, etc.), many potential clients are still hesitant to join the cloud due to their security and privacy concerns. Outsourcing the data to a cloud in a multitenant environment brings many security challenges including data leaks, threats, and malicious attacks. The cloud computing platform, virtual servers, and the provider's services are highly dynamic and diverse in nature, making the traditional access control mechanisms (e.g., Firewalls and VLAN etc.) less effective in controlling the unauthorized access to cloud's data and resources. Several access control policies and authorization system have been proposed in literature to defend against cloud security threats. Most of these systems are designed to work with one or more access control policies. However, little work has been done to develop generic access control architecture capable to work with most of the available access control policies. In this paper, we present a new access control architecture using a global resource management system (GRMS) to effectively handle both local and remote access requests. The introduction of GRMS makes our proposed architecture semi distributed at the expense of minimal request-response time. In addition, our proposed architecture works effectively with both peered access control module (PACM) and virtual resource manager (VRM) to protect and manage all resources and services of cloud providers from unauthorized access.
UR - http://www.scopus.com/inward/record.url?scp=84960158536&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960158536&partnerID=8YFLogxK
U2 - 10.1109/CLOUD.2015.73
DO - 10.1109/CLOUD.2015.73
M3 - Conference contribution
AN - SCOPUS:84960158536
T3 - Proceedings - 2015 IEEE 8th International Conference on Cloud Computing, CLOUD 2015
SP - 501
EP - 507
BT - Proceedings - 2015 IEEE 8th International Conference on Cloud Computing, CLOUD 2015
A2 - Pu, Calton
A2 - Mohindra, Ajay
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 8th IEEE International Conference on Cloud Computing, CLOUD 2015
Y2 - 27 June 2015 through 2 July 2015
ER -