A simulated annealing based inexact oracle for wasserstein loss minimization

Jianbo Ye, James Z. Wang, Jia Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Learning under a Wasserstein loss, a.k.a. Wasserstein loss minimization (WLM), is an emerging research topic for gaining insights from a large set of structured objects. Despite being conceptually simple, WLM problems are computationally challenging because they involve minimizing over functions of quantities (i.e. Wasserstein distances) that themselves require numerical algorithms to compute. In this paper, we introduce a stochastic approach based on simulated annealing for solving WLMs. Particularly, we have developed a Gibbs sampler to approximate effectively and efficiently the partial gradients of a sequence of Wasserstein losses. Our new approach has the advantages of numerical stability and readiness for warm starts. These characteristics are valuable for WLM problems that often require multiple levels of iterations in which the oracle for computing the value and gradient of a loss function is embedded. We applied the method to optimal transport with Coulomb cost and the Wasserstein non-negative matrix factorization problem, and made comparisons with the existing method of entropy regularization.

Original languageEnglish (US)
Title of host publication34th International Conference on Machine Learning, ICML 2017
PublisherInternational Machine Learning Society (IMLS)
Pages6005-6017
Number of pages13
ISBN (Electronic)9781510855144
StatePublished - 2017
Event34th International Conference on Machine Learning, ICML 2017 - Sydney, Australia
Duration: Aug 6 2017Aug 11 2017

Publication series

Name34th International Conference on Machine Learning, ICML 2017
Volume8

Other

Other34th International Conference on Machine Learning, ICML 2017
Country/TerritoryAustralia
CitySydney
Period8/6/178/11/17

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'A simulated annealing based inexact oracle for wasserstein loss minimization'. Together they form a unique fingerprint.

Cite this