A string twining robot for high trellis hop production

Long He, Jianfeng Zhou, Qin Zhang, Henry J. Charvet

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The hop plant is usually trained to grow on strings in commercial production. String twining is a labor intensive task in high trellis hop fields, and there is a high demand from industry to have the operation mechanized. In this study, an innovative string twining robot, comprising end-effectors for knot tying, string feeding, and trellis wire capturing was designed to perform this task autonomously. A laboratory-scale, proof of concept prototype, was fabricated to validate the performance and effectiveness of this robotic device and associated control algorithms. Functionality assessment tests verified that the string feeding end-effector could feed 6m length of string with acceptable variation. The trellis wire capturing end-effector could functionally achieve the required procedure for continuous twining. The comprehensive twining test proved that the integrated twining robot took approximately 11.2s to coordinate all three end-effectors to complete one string twining cycle with a moving forward speed of the mobile platform at 0.19ms-1. At this speed, the developed prototype robot achieved 97% of successful rate. The laboratory test results indicated that the developed prototype robot has the potential to be implemented for high trellis hop twining task.

Original languageEnglish (US)
Pages (from-to)207-214
Number of pages8
JournalComputers and Electronics in Agriculture
Volume121
DOIs
StatePublished - Feb 1 2016

All Science Journal Classification (ASJC) codes

  • Forestry
  • Agronomy and Crop Science
  • Computer Science Applications
  • Horticulture

Fingerprint

Dive into the research topics of 'A string twining robot for high trellis hop production'. Together they form a unique fingerprint.

Cite this