A study of the efficacy of flame electrical resistance for standoff measurements during the oxyfuel cutting process

Christopher R. Martin, Alexandrina Untaroiu, Kemu Xu, S. M. Mahbobur Rahman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This is a study of the suitability of preheat flame electrical resistance as a potential method for measuring the standoff distance an oxyfuel cutting torch and a work piece. Careful scrutiny of forty seven (47) individual experiments demonstrate that when cut quality is good, there is a linear repeatable relationship between the two with uncertainty about ± .3mm (.015in). As the cut quality degrades, the formation of top-edge dross reduces the electrical path length in the flame, and momentary reduction in the reaction rate in the kerf reduces the free electrons in the flame, causing rises in flame resistance. In these conditions, measurement uncertainty reduces to ± 1mm (.040in) or worse.

Original languageEnglish (US)
Title of host publicationAdditive Manufacturing; Advanced Materials Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791885062
DOIs
StatePublished - 2021
EventASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021 - Virtual, Online
Duration: Jun 21 2021Jun 25 2021

Publication series

NameProceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021
Volume1

Conference

ConferenceASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021
CityVirtual, Online
Period6/21/216/25/21

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'A study of the efficacy of flame electrical resistance for standoff measurements during the oxyfuel cutting process'. Together they form a unique fingerprint.

Cite this