A successful 3D core-collapse supernova explosion model

David Vartanyan, Adam Burrows, David Radice, M. Aaron Skinner, Joshua Dolence

Research output: Contribution to journalArticlepeer-review

126 Scopus citations


In this paper, we present the results of our three-dimensional, multigroup, multineutrinospecies radiation/hydrodynamic simulation using the state-of-the-art code FORNAX of the terminal dynamics of the core of a non-rotating 16 M stellar progenitor. The calculation incorporates redistribution by inelastic scattering, a correction for the effect of many-body interactions on the neutrino-nucleon scattering rates, approximate general relativity (including the effects of gravitational redshifts), velocity-dependent frequency advection, and an implementation of initial perturbations in the progenitor core. The model explodes within ~100 ms of bounce (near when the silicon-oxygen interface is accreted through the temporarily stalled shock) and by the end of the simulation (here, ~677 ms after bounce) is accumulating explosion energy at a rate of ~2.5 × 1050 erg s-1. The supernova explodes with an asymmetrical multiplume structure, with one hemisphere predominating. The gravitational mass of the residual proto-neutron star at ~677 ms is ~1.42 M. Even at the end of the simulation, explosion in most of the solid angle is accompanied by some accretion in an annular region at the wasp-like waist of the debris field. The ejecta electron fraction (Ye) is distributed between ~0.48 and ~0.56, with most of the ejecta mass proton-rich. This may have implications for supernova nucleosynthesis, and could have a bearing on the p- and vp-processes and on the site of the first peak of the r-process. The ejecta spatial distributions of both Ye and mass density are predominantly in wide-angle plumes and large-scale structures, but are nevertheless quite patchy.

Original languageEnglish (US)
Pages (from-to)351-369
Number of pages19
JournalMonthly Notices of the Royal Astronomical Society
Issue number1
StatePublished - Jan 1 2019

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'A successful 3D core-collapse supernova explosion model'. Together they form a unique fingerprint.

Cite this