TY - GEN
T1 - A system dynamics modeling methodology to predict transient phenomena in compressible fluid flow systems
AU - Folien, Kenneth
AU - Stockar, Stephanie
AU - Canova, Marcello
AU - Guezennec, Yann
AU - Rizzoni, Giorgio
PY - 2011
Y1 - 2011
N2 - The prediction of dynamic phenomena in compressible fluids, such as the air path systems of Internal Combustion Engines (ICEs) has seen an enormous growth in the past years. Striving to improve engine performance, fuel economy and emissions has led to the understanding that significant gains can only be achieved if improvements in engine design can be matched by the ability to closely control engine breathing and combustion performance. The current state of the art in the modeling of ICEs air path systems presents two main approaches, namely the high-fidelity, computationally intensive numerical methods and the low-fidelity, calibration intensive lumped-parameter models. This paper introduces a novel approach for modeling unsteady phenomena in compressible fluids that combines the advantages of numerical methods (high accuracy and low calibration effort) with the limited computation time of lumped-parameter models based on ordinary differential equations (ODEs). The approach is here presented for the one-dimensional nonlinear Euler equations for compressible fluid flow systems, which are particularly relevant for modeling the air path systems of internal combustion engines.
AB - The prediction of dynamic phenomena in compressible fluids, such as the air path systems of Internal Combustion Engines (ICEs) has seen an enormous growth in the past years. Striving to improve engine performance, fuel economy and emissions has led to the understanding that significant gains can only be achieved if improvements in engine design can be matched by the ability to closely control engine breathing and combustion performance. The current state of the art in the modeling of ICEs air path systems presents two main approaches, namely the high-fidelity, computationally intensive numerical methods and the low-fidelity, calibration intensive lumped-parameter models. This paper introduces a novel approach for modeling unsteady phenomena in compressible fluids that combines the advantages of numerical methods (high accuracy and low calibration effort) with the limited computation time of lumped-parameter models based on ordinary differential equations (ODEs). The approach is here presented for the one-dimensional nonlinear Euler equations for compressible fluid flow systems, which are particularly relevant for modeling the air path systems of internal combustion engines.
UR - http://www.scopus.com/inward/record.url?scp=84881457336&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881457336&partnerID=8YFLogxK
U2 - 10.1115/DSCC2011-5944
DO - 10.1115/DSCC2011-5944
M3 - Conference contribution
AN - SCOPUS:84881457336
SN - 9780791854761
T3 - ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
SP - 611
EP - 617
BT - ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
T2 - ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Y2 - 31 October 2011 through 2 November 2011
ER -