TY - GEN
T1 - A Tale of Evil Twins
T2 - 27th ACM SIGSAC Conference on Computer and Communications Security, CCS 2020
AU - Pang, Ren
AU - Shen, Hua
AU - Zhang, Xinyang
AU - Ji, Shouling
AU - Vorobeychik, Yevgeniy
AU - Luo, Xiapu
AU - Liu, Alex
AU - Wang, Ting
N1 - Publisher Copyright:
© 2020 ACM.
PY - 2020/10/30
Y1 - 2020/10/30
N2 - Despite their tremendous success in a range of domains, deep learning systems are inherently susceptible to two types of manipulations: adversarial inputs - maliciously crafted samples that deceive target deep neural network (DNN) models, and poisoned models - adversely forged DNNs that misbehave on pre-defined inputs. While prior work has intensively studied the two attack vectors in parallel, there is still a lack of understanding about their fundamental connections: what are the dynamic interactions between the two attack vectors? what are the implications of such interactions for optimizing existing attacks? what are the potential countermeasures against the enhanced attacks? Answering these key questions is crucial for assessing and mitigating the holistic vulnerabilities of DNNs deployed in realistic settings. Here we take a solid step towards this goal by conducting the first systematic study of the two attack vectors within a unified framework. Specifically, (i) we develop a new attack model that jointly optimizes adversarial inputs and poisoned models; (ii) with both analytical and empirical evidence, we reveal that there exist intriguing "mutual reinforcement"effects between the two attack vectors - leveraging one vector significantly amplifies the effectiveness of the other; (iii) we demonstrate that such effects enable a large design spectrum for the adversary to enhance the existing attacks that exploit both vectors (e.g., backdoor attacks), such as maximizing the attack evasiveness with respect to various detection methods; (iv) finally, we discuss potential countermeasures against such optimized attacks and their technical challenges, pointing to several promising research directions.
AB - Despite their tremendous success in a range of domains, deep learning systems are inherently susceptible to two types of manipulations: adversarial inputs - maliciously crafted samples that deceive target deep neural network (DNN) models, and poisoned models - adversely forged DNNs that misbehave on pre-defined inputs. While prior work has intensively studied the two attack vectors in parallel, there is still a lack of understanding about their fundamental connections: what are the dynamic interactions between the two attack vectors? what are the implications of such interactions for optimizing existing attacks? what are the potential countermeasures against the enhanced attacks? Answering these key questions is crucial for assessing and mitigating the holistic vulnerabilities of DNNs deployed in realistic settings. Here we take a solid step towards this goal by conducting the first systematic study of the two attack vectors within a unified framework. Specifically, (i) we develop a new attack model that jointly optimizes adversarial inputs and poisoned models; (ii) with both analytical and empirical evidence, we reveal that there exist intriguing "mutual reinforcement"effects between the two attack vectors - leveraging one vector significantly amplifies the effectiveness of the other; (iii) we demonstrate that such effects enable a large design spectrum for the adversary to enhance the existing attacks that exploit both vectors (e.g., backdoor attacks), such as maximizing the attack evasiveness with respect to various detection methods; (iv) finally, we discuss potential countermeasures against such optimized attacks and their technical challenges, pointing to several promising research directions.
UR - https://www.scopus.com/pages/publications/85094742924
UR - https://www.scopus.com/inward/citedby.url?scp=85094742924&partnerID=8YFLogxK
U2 - 10.1145/3372297.3417253
DO - 10.1145/3372297.3417253
M3 - Conference contribution
AN - SCOPUS:85094742924
T3 - Proceedings of the ACM Conference on Computer and Communications Security
SP - 85
EP - 99
BT - CCS 2020 - Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security
PB - Association for Computing Machinery
Y2 - 9 November 2020 through 13 November 2020
ER -