A Theoretical Investigation of the Impact of Blood-Endothelium Mechanical Interactions on the Cerebral Nitric Oxide Biotransport

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Cerebral nitric oxide (NO), a small diffusive molecule, plays a critical role in brain’s functionality. More precisely, NO acts as a neuro-glial-vascular messenger that aids various chemo-mechanical communications among brain cells, blood, and cerebral vasculature. A disequilibrium in the NO bioavailability and/or a delay in (or lack of) interactions of NO with other molecules due to, for instance, inflammation can lead to the onset and progression of cerebrovascular diseases. Mathematical models of cerebral NO biotransport can provide essential insights into mechanisms of cerebrovascular diseases that may lead to the development of better preventive, diagnostic, and therapeutic methods. In this chapter, a two-dimensional space-fractional reaction-diffusion equation is proposed to model cerebral NO biotransport. The equation uses spatial fractional order derivatives to describe NO anomalous diffusion caused by the experimentally observed entrapping of NO in circulating endothelial microparticles. Cerebrovascular diseases cause an increase in the amount of endothelial microparticles and thus may lead to an enhanced anomalous diffusion of NO. The model includes the NO production by synthesis in neurons and by shear-induced mechanotransduction in the endothelial cells, and the loss of NO due to its interactions with superoxide and hemoglobin. The blood-endothelium mechanical interactions contribute to the shear-induced production of NO. Perturbation series solutions for the coupled blood-endothelium mechanics are adapted from literature for two cases: impermeable and permeable endothelium. Thus, the viscous dissipation at the blood-endothelium interface can be calculated analytically. The model generalizes a published one-dimensional model of cerebral NO anomalous diffusion in which the blood flow effect on the vascular wall was modeled as a mere oscillatory boundary condition. Numerical simulations suggest that for NO anomalous diffusion of fractional order 0.85 and in the presence of endothelial permeability and blood flow, the NO concentration at the endothelium increases in time which agrees with studies of stroke.

Original languageEnglish (US)
Title of host publicationChallenges in Mechanics of Time-Dependent Materials and Mechanics of Biological Systems and Materials, Volume 2 - Proceedings of the 2022 Annual Conference on Experimental and Applied Mechanics
EditorsAlireza Amirkhizi, Jevan Furmanski, Christian Franck, Karen Kasza, Aaron Forster, Jon Estrada
PublisherSpringer
Pages25-32
Number of pages8
ISBN (Print)9783031174568
DOIs
StatePublished - 2023
EventSEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2022 - Pittsburgh, United States
Duration: Jun 13 2022Jun 16 2022

Publication series

NameConference Proceedings of the Society for Experimental Mechanics Series
ISSN (Print)2191-5644
ISSN (Electronic)2191-5652

Conference

ConferenceSEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2022
Country/TerritoryUnited States
CityPittsburgh
Period6/13/226/16/22

All Science Journal Classification (ASJC) codes

  • Engineering(all)
  • Computational Mechanics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A Theoretical Investigation of the Impact of Blood-Endothelium Mechanical Interactions on the Cerebral Nitric Oxide Biotransport'. Together they form a unique fingerprint.

Cite this