@inproceedings{68d8d5e1ca4b4356a92bdf77c5b4695b,
title = "A thorough analysis of various geometries for a dynamic calibration target for through-wall and through-rubble radar",
abstract = "It is common practice to use a metal conducting sphere for radar calibration purposes. The aspect-independence of a sphere allows for a more accurate and repeatable calibration of a radar than using a nonspherical calibration artifact. In addition, the radar cross section (RCS) for scattering spheres is well-known and can be calculated fairly easily using far field approximations. For Doppler radar testing, it is desired to apply these calibration advantages to a dynamic target. To accomplish this, a spherical polyhedron is investigated as the calibration target. This paper analyzes the scattering characteristics for various spherical polyhedral geometries. Each geometry is analyzed at 3.6 GHz in two states: contracted and expanded. For calibration purposes, it is desired that the target have a consistent monostatic RCS over the entirety of its surface. The RCS of each spherical polyhedral is analyzed and an optimized geometry, for calibration purposes, is chosen.",
author = "Harner, {Michael J.} and Narayanan, {Ram M.} and Jendzurski, {John R.} and Paulter, {Nicholas G.}",
note = "Publisher Copyright: {\textcopyright} 2018 SPIE.; Radar Sensor Technology XXII 2018 ; Conference date: 16-04-2018 Through 18-04-2018",
year = "2018",
doi = "10.1117/12.2305980",
language = "English (US)",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Armin Doerry and Ranney, {Kenneth I.}",
booktitle = "Radar Sensor Technology XXII",
address = "United States",
}