Abstract
The design of a three-terminal self-aligned dual-pillar (DP) magnetic tunnel junction (MTJ) utilizing both current-induced spin-transfer torque (STT) and magnetic domain-wall motion effects is proposed for high-speed nonvolatile robust memory applications. The choice of a thin tunneling oxide (∼0.9 nm) in a write-in port, spatially and electrically separated from a read-out port incorporating a thicker (∼1.8 nm) oxide on an extended thin-film multilayer stack, significantly improves the overall cell stability and parametric process yield of a memory array. A dual-bit-line memory architecture incorporating a single-ended voltage-sensing scheme for fast data readout with just one access transistor per cell is also proposed for the first time. The technologycircuit cooptimization of the proposed single-transistor (1T) DP STT magnetic random access memory (MRAM) cell is carried out using effective mass-based transport simulations in nonequilibrium Green's function formalism and accurate micromagnetic simulations involving the LandauLifshitzGilbertSlonczewski equation. The proposed DP STT-MRAM bit cell outperforms a state-of-the-art 1T1MTJ STT-MRAM cell in terms of higher cell tunneling magnetoresistance, simplified memory array architecture with a single supply for read/write, and significantly lower probability of disturb and access failures under parametric process variations with a marginal increase in critical switching current.
Original language | English (US) |
---|---|
Article number | 5739108 |
Pages (from-to) | 1508-1516 |
Number of pages | 9 |
Journal | IEEE Transactions on Electron Devices |
Volume | 58 |
Issue number | 5 |
DOIs | |
State | Published - May 2011 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering