TY - GEN
T1 - A two-tiered grammatical approach for agent-based computational design
AU - Puentes, Lucas
AU - McComb, Christopher
AU - Cagan, Jonathan
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - Early stages of the engineering design process are vital to shaping the final design; each subsequent step builds from the initial concept. Innovation-driven engineering problems require designers to focus heavily on early-stage design generation, with constant application and evaluation of design changes. Strategies to reduce the amount of time and effort designers spend in this phase could improve the efficiency of the design process as a whole. This paper seeks to create and demonstrate a two-tiered design grammar that encodes heuristic strategies to aid in the generation of early solution concepts. Specifically, this two-tiered grammar mimics the combination of heuristic-based strategic actions and parametric modifications employed by human designers. Rules in the higher-tier are abstract and potentially applicable to multiple design problems across a number of fields. These abstract rules are translated into a series of lower-tier rule applications in a spatial design grammar, which are inherently domain-specific. This grammar is implemented within the HSAT agent-based algorithm. Agents iteratively select actions from either the higher-tier or lower-tier. This algorithm is applied to the design of wave energy converters, devices which use the motion of ocean waves to generate electrical power. Comparisons are made between designs generated using only lower-tier rules and those generated using only higher-tier rules.
AB - Early stages of the engineering design process are vital to shaping the final design; each subsequent step builds from the initial concept. Innovation-driven engineering problems require designers to focus heavily on early-stage design generation, with constant application and evaluation of design changes. Strategies to reduce the amount of time and effort designers spend in this phase could improve the efficiency of the design process as a whole. This paper seeks to create and demonstrate a two-tiered design grammar that encodes heuristic strategies to aid in the generation of early solution concepts. Specifically, this two-tiered grammar mimics the combination of heuristic-based strategic actions and parametric modifications employed by human designers. Rules in the higher-tier are abstract and potentially applicable to multiple design problems across a number of fields. These abstract rules are translated into a series of lower-tier rule applications in a spatial design grammar, which are inherently domain-specific. This grammar is implemented within the HSAT agent-based algorithm. Agents iteratively select actions from either the higher-tier or lower-tier. This algorithm is applied to the design of wave energy converters, devices which use the motion of ocean waves to generate electrical power. Comparisons are made between designs generated using only lower-tier rules and those generated using only higher-tier rules.
UR - http://www.scopus.com/inward/record.url?scp=85057010854&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057010854&partnerID=8YFLogxK
U2 - 10.1115/DETC2018-85648
DO - 10.1115/DETC2018-85648
M3 - Conference contribution
AN - SCOPUS:85057010854
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 44th Design Automation Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Y2 - 26 August 2018 through 29 August 2018
ER -