TY - GEN
T1 - A unified information model for product family design management
AU - Nanda, Jyotirmaya
AU - Simpson, Timothy W.
AU - Shooter, Steven B.
AU - Stone, Robert B.
PY - 2005
Y1 - 2005
N2 - A flexible information model for systematic development and deployment of product families during all phases of the product realization process is crucial for product-oriented organizations. In this paper we propose a unified information model to capture, share, and organize product design contents, concepts, and contexts across different phases of the product realization process using a web ontology language (OWL) representation. Representing product families by preconceived common ontologies shows promise in promoting component sharing while facilitating search and exploration of design information over various phases and spanning multiple products in a family. Three distinct types of design information, namely, (1) customer needs, (2) product functions, and (3) product components captured during different phases of the product realization process, are considered in this paper to demonstrate the proposed information model. Product vector and function component mapping matrices along with the common ontologies are utilized for designer-initiated information exploration and aggregation. As a demonstration, six products from a family of power tools are represented in OWL DL (Description Logic) format, capturing distinct information needed during the various phases of product realization.
AB - A flexible information model for systematic development and deployment of product families during all phases of the product realization process is crucial for product-oriented organizations. In this paper we propose a unified information model to capture, share, and organize product design contents, concepts, and contexts across different phases of the product realization process using a web ontology language (OWL) representation. Representing product families by preconceived common ontologies shows promise in promoting component sharing while facilitating search and exploration of design information over various phases and spanning multiple products in a family. Three distinct types of design information, namely, (1) customer needs, (2) product functions, and (3) product components captured during different phases of the product realization process, are considered in this paper to demonstrate the proposed information model. Product vector and function component mapping matrices along with the common ontologies are utilized for designer-initiated information exploration and aggregation. As a demonstration, six products from a family of power tools are represented in OWL DL (Description Logic) format, capturing distinct information needed during the various phases of product realization.
UR - http://www.scopus.com/inward/record.url?scp=33144466286&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33144466286&partnerID=8YFLogxK
U2 - 10.1115/detc2005-84869
DO - 10.1115/detc2005-84869
M3 - Conference contribution
AN - SCOPUS:33144466286
SN - 079184739X
SN - 9780791847398
T3 - Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005
SP - 709
EP - 718
BT - Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences - DETC2005
PB - American Society of Mechanical Engineers
T2 - DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Y2 - 24 September 2005 through 28 September 2005
ER -