TY - GEN
T1 - A Unified MPC Strategy for a Tilt-rotor VTOL UAV Towards Seamless Mode Transitioning
AU - Chen, Qizhao
AU - Hu, Ziqi
AU - Geng, Junyi
AU - Bai, Dongwei
AU - Mousaei, Mohammad
AU - Scherer, Sebastian
N1 - Publisher Copyright:
© 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Capabilities of long-range flight and vertical take-off and landing (VTOL) are essential for Urban Air Mobility (UAM). Tiltrotor VTOLs have the advantage of balancing control simplicity and system complexity due to their redundant control authority. Prior work on controlling these aircraft either requires separate controllers and switching modes for different vehicle configurations or performs the control allocation on separate actuator sets, which cannot fully use the potential of the redundancy of tiltrotor. This paper introduces a unified MPC-based control strategy for a customized tiltrotor VTOL Unmanned Aerial Vehicle (UAV), which does not require mode-switching and can perform the control allocation in a consistent way. The incorporation of four independently controllable rotors in VTOL design offers an extra level of redundancy, allowing the VTOL to accommodate actuator failures. The result shows that our approach outperforms PID controllers while maintaining unified control. It allows the VTOL to perform smooth acceleration/deceleration, and precise coordinated turns. In addition, the independently controlled tilts enable the vehicle to handle actuator failures, ensuring that the aircraft remains operational even in the event of a servo or motor malfunction.
AB - Capabilities of long-range flight and vertical take-off and landing (VTOL) are essential for Urban Air Mobility (UAM). Tiltrotor VTOLs have the advantage of balancing control simplicity and system complexity due to their redundant control authority. Prior work on controlling these aircraft either requires separate controllers and switching modes for different vehicle configurations or performs the control allocation on separate actuator sets, which cannot fully use the potential of the redundancy of tiltrotor. This paper introduces a unified MPC-based control strategy for a customized tiltrotor VTOL Unmanned Aerial Vehicle (UAV), which does not require mode-switching and can perform the control allocation in a consistent way. The incorporation of four independently controllable rotors in VTOL design offers an extra level of redundancy, allowing the VTOL to accommodate actuator failures. The result shows that our approach outperforms PID controllers while maintaining unified control. It allows the VTOL to perform smooth acceleration/deceleration, and precise coordinated turns. In addition, the independently controlled tilts enable the vehicle to handle actuator failures, ensuring that the aircraft remains operational even in the event of a servo or motor malfunction.
UR - http://www.scopus.com/inward/record.url?scp=85195589341&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85195589341&partnerID=8YFLogxK
U2 - 10.2514/6.2024-2878
DO - 10.2514/6.2024-2878
M3 - Conference contribution
AN - SCOPUS:85195589341
SN - 9781624107115
T3 - AIAA SciTech Forum and Exposition, 2024
BT - AIAA SciTech Forum and Exposition, 2024
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA SciTech Forum and Exposition, 2024
Y2 - 8 January 2024 through 12 January 2024
ER -