A Unique ISR Program Determines Cellular Responses to Chronic Stress

Bo Jhih Guan, Vincent van Hoef, Raul Jobava, Orna Elroy-Stein, Leos S. Valasek, Marie Cargnello, Xing Huang Gao, Dawid Krokowski, William C. Merrick, Scot R. Kimball, Anton A. Komar, Antonis E. Koromilas, Anthony Wynshaw-Boris, Ivan Topisirovic, Ola Larsson, Maria Hatzoglou

Research output: Contribution to journalArticlepeer-review

101 Scopus citations


The integrated stress response (ISR) is a homeostatic mechanism induced by endoplasmic reticulum (ER) stress. In acute/transient ER stress, decreased global protein synthesis and increased uORF mRNA translation are followed by normalization of protein synthesis. Here, we report a dramatically different response during chronic ER stress. This chronic ISR program is characterized by persistently elevated uORF mRNA translation and concurrent gene expression reprogramming, which permits simultaneous stress sensing and proteostasis. The program includes PERK-dependent switching to an eIF3-dependent translation initiation mechanism, resulting in partial, but not complete, translational recovery, which, together with transcriptional reprogramming, selectively bolsters expression of proteins with ER functions. Coordination of transcriptional and translational reprogramming prevents ER dysfunction and inhibits “foamy cell” development, thus establishing a molecular basis for understanding human diseases associated with ER dysfunction. Guan et al. unravel the mechanism of adaptation to chronic stress that encompasses previously unappreciated remodeling of the translation initiation machinery guided by PERK. These changes in the translation machinery are coordinated with stress-induced transcriptional reprograming and, when disrupted, result in a foamy cell phenotype and cell death.

Original languageEnglish (US)
Pages (from-to)885-900.e6
JournalMolecular cell
Issue number5
StatePublished - Dec 7 2017

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'A Unique ISR Program Determines Cellular Responses to Chronic Stress'. Together they form a unique fingerprint.

Cite this