A versatile design strategy for thin composite planar double-sided high-impedance surfaces

Zikri Bayraktar, Micah D. Gregory, Xiande Wang, Douglas H. Werner

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

A novel methodology is introduced for the design synthesis of thin planar realizations of volumetric high-impedance or artificial magnetic conducting surfaces (AMC). The design synthesis involves optimization of two different metallic frequency selective surface (FSS) type structures printed on each side of a thin dielectric substrate material. This technique eliminates the need for a complete metallic backplane common in conventional AMC designs, making use of the same dielectric substrate for two high-impedance surfaces; one on each side. Optimization of the FSS unit cell geometries is carried out with a robust genetic algorithm (GA) technique that is combined with a full-wave periodic finite element boundary integral (PFEBI) electromagnetic simulation code for fast and accurate optimization of desired AMC performance at a single frequency or over multiple frequency bands. Several examples of thin AMC ground planes are optimized for use in the X-band. Additional design examples that provide AMC behavior on one side and absorber behavior on the other are also provided. Lastly, an example illustrating the utility of the double-sided AMC separator structure is shown for a design targeting the standard Wi-Fi frequencies of 2.4 GHz and 5.2 GHz.

Original languageEnglish (US)
Article number6183463
Pages (from-to)2770-2780
Number of pages11
JournalIEEE Transactions on Antennas and Propagation
Volume60
Issue number6
DOIs
StatePublished - 2012

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A versatile design strategy for thin composite planar double-sided high-impedance surfaces'. Together they form a unique fingerprint.

Cite this