Ability of Two Strains of Lactic Acid Bacteria to Inhibit Listeria monocytogenes by Spot Inoculation and in an Environmental Microbiome Context

Priscilla Sinclair, M. Laura Rolon, Jingzhang Feng, Adrián F. Padín-López, Luke LaBorde, Jasna Kovac

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We evaluated the ability of two strains of lactic acid bacteria (LAB) to inhibit L. monocytogenes using spot inoculation and environmental microbiome attached-biomass assays. LAB strains (PS01155 and PS01156) were tested for antilisterial activity toward 22 phylogenetically distinct L. monocytogenes strains isolated from three fruit packing environments (F1, F2, and F3). LAB strains were tested by spot inoculation onto L. monocytogenes lawns (108 and 107 CFU/mL) and incubated at 15, 20, 25, or 30°C for 3 days. The same LAB strains were also cocultured at 15°C for 3, 5, and 15 days in polypropylene conical tubes with L. monocytogenes and environmental microbiome suspensions collected from F1, F2, and F3. In the spot inoculation assay, PS01156 was significantly more inhibitory toward less concentrated L. monocytogenes lawns than more concentrated lawns at all the tested temperatures, while PS01155 was significantly more inhibitory toward less concentrated lawns only at 15 and 25°C. Furthermore, inhibition of L. monocytogenes by PS01156 was significantly greater at 15°C than higher temperatures, whereas the temperature did not have an effect on the inhibitory activity of PS01155. In the assay using attached environmental microbiome biomass, L. monocytogenes concentration was significantly reduced by PS01156, but not PS01155, when cocultured with microbiomes from F1 and F3 and incubated for 3 days at 15°C. Attached biomass microbiota composition was significantly affected by incubation time but not by LAB strain. This study demonstrates that LAB strains that may exhibit inhibitory properties toward L. monocytogenes in a spot inoculation assay may not maintain antilisterial activity within a complex microbiome.

Original languageEnglish (US)
JournalMicrobiology Spectrum
Volume10
Issue number4
DOIs
StatePublished - Aug 2022

All Science Journal Classification (ASJC) codes

  • Physiology
  • Ecology
  • General Immunology and Microbiology
  • Genetics
  • Microbiology (medical)
  • Cell Biology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Ability of Two Strains of Lactic Acid Bacteria to Inhibit Listeria monocytogenes by Spot Inoculation and in an Environmental Microbiome Context'. Together they form a unique fingerprint.

Cite this