Ablation threshold and temperature dependent thermal conductivity of high entropy carbide thin films

Milena Milich, Kathleen Quiambao-Tomko, Mohammad Delower Hossain, John Tomko, Jon Paul Maria, Patrick E. Hopkins

Research output: Contribution to journalArticlepeer-review


High entropy carbides (HECs) are a promising new class of ultra-high temperature ceramics that could provide novel material solutions for leading edges of hypersonic vehicles, which experience extreme temperatures and thermal gradients. Although the mechanical and thermal properties of HECs have been studied extensively at room temperature, few works have examined HEC properties at high temperatures or considered these materials' responses to thermal shock. In this work, we measure the thermal conductivity of a five-cation HEC up to 1200°C. We find that thermal conductivity increases with temperature, consistent with trends demonstrated in single-metal carbides. We also measure thermal conductivity of a HEC deposited with varying CH4 flow rate, and find that although thermal conductivity is reduced when carbon content surpasses stoichiometric concentrations, the films all exhibited the same temperature dependent trends regardless of carbon content. To compare the thermal shock resistance of HECs with a refractory carbide, we conduct pulsed laser ablation measurements to determine the fluence threshold the HECs can withstand before damaging. The fluence threshold of the HEC thin films trends with the theoretical hardness of the HECs as expected.

Original languageEnglish (US)
Pages (from-to)151-164
Number of pages14
JournalHigh Temperatures - High Pressures
Issue number2
StatePublished - 2023

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Ablation threshold and temperature dependent thermal conductivity of high entropy carbide thin films'. Together they form a unique fingerprint.

Cite this