TY - GEN
T1 - Accelerated dynamic MRI reconstruction with total variation and nuclear norm regularization
AU - Yao, Jiawen
AU - Xu, Zheng
AU - Huang, Xiaolei
AU - Huang, Junzhou
N1 - Publisher Copyright:
© Springer International Publishing Switzerland 2015.
PY - 2015
Y1 - 2015
N2 - In this paper, we propose a novel compressive sensing model for dynamic MR reconstruction. With total variation (TV) and nuclear norm (NN) regularization, our method can utilize both spatial and temporal redundancy in dynamic MR images. Due to the non-smoothness and non-separability of TV and NN terms, it is difficult to optimize the primal problem. To address this issue, we propose a fast algorithm by solving a primal-dual form of the original problem. The ergodic convergence rate of the proposed method is O(1/N) for N iterations. In comparison with six state-of-the-art methods, extensive experiments on single-coil and multi-coil dynamic MR data demonstrate the superior performance of the proposed method in terms of both reconstruction accuracy and time complexity.
AB - In this paper, we propose a novel compressive sensing model for dynamic MR reconstruction. With total variation (TV) and nuclear norm (NN) regularization, our method can utilize both spatial and temporal redundancy in dynamic MR images. Due to the non-smoothness and non-separability of TV and NN terms, it is difficult to optimize the primal problem. To address this issue, we propose a fast algorithm by solving a primal-dual form of the original problem. The ergodic convergence rate of the proposed method is O(1/N) for N iterations. In comparison with six state-of-the-art methods, extensive experiments on single-coil and multi-coil dynamic MR data demonstrate the superior performance of the proposed method in terms of both reconstruction accuracy and time complexity.
UR - http://www.scopus.com/inward/record.url?scp=84951022004&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84951022004&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-24571-3_76
DO - 10.1007/978-3-319-24571-3_76
M3 - Conference contribution
AN - SCOPUS:84951022004
SN - 9783319245706
SN - 9783319245706
SN - 9783319245706
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 635
EP - 642
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference, Proceedings
A2 - Hornegger, Joachim
A2 - Frangi, Alejandro F.
A2 - Wells, William M.
A2 - Frangi, Alejandro F.
A2 - Navab, Nassir
A2 - Hornegger, Joachim
A2 - Navab, Nassir
A2 - Wells, William M.
A2 - Wells, William M.
A2 - Frangi, Alejandro F.
A2 - Hornegger, Joachim
A2 - Navab, Nassir
PB - Springer Verlag
T2 - 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015
Y2 - 5 October 2015 through 9 October 2015
ER -