Accelerated Primal-Dual Algorithms for Distributed Smooth Convex Optimization over Networks

Jinming Xu, Ye Tian, Ying Sun, Gesualdo Scutari

Research output: Contribution to journalConference articlepeer-review

17 Scopus citations

Abstract

This paper proposes a novel family of primal-dual-based distributed algorithms for smooth, convex, multi-agent optimization over networks that uses only gradient information and gossip communications. The algorithms can also employ acceleration on the computation and communications. We provide a unified analysis of their convergence rate, measured in terms of the Bregman distance associated to the saddle point reformation of the distributed optimization problem. When acceleration is employed, the rate is shown to be optimal, in the sense that it matches (under the proposed metric) existing complexity lower bounds of distributed algorithms applicable to such a class of problem and using only gradient information and gossip communications. Preliminary numerical results on distributed least-square regression problems show that the proposed algorithm compares favorably on existing distributed schemes.

Original languageEnglish (US)
Pages (from-to)2381-2391
Number of pages11
JournalProceedings of Machine Learning Research
Volume108
StatePublished - 2020
Event23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020 - Virtual, Online
Duration: Aug 26 2020Aug 28 2020

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Cite this