TY - JOUR
T1 - Accumulating evidence to support the safe and efficacious use of a proprietary blend of capsaicinoids in mediating risk factors for obesity
AU - Mariwala, Javahar Kohli
AU - Rai, Deshanie
AU - Padigaru, Muralidhara
AU - Ashok Morde, Abhijeet
AU - Maddox, Ewa
AU - Maalouf, Samar
AU - Smith, Kayla
AU - Vanden Heuvel, John P.
N1 - Publisher Copyright:
© 2021 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC
PY - 2021/6
Y1 - 2021/6
N2 - Obesity is a significant public health concern, and finding safe and effective means for combating this condition is needed. This study investigates the safety and efficacy of supplementation of a blend of capsaicinoids on weight gain, fat mass, and blood chemistry in a high-fat diet (HFD) model of obesity in mice and on adipocyte differentiation and gene expression in 3T3-L1 preadipocytes. High-fat diet (HFD)-fed mice were treated with a proprietary capsaicinoid concentrate (Capsimax®; OmniActive Health Technologies Ltd., India) and compared to orlistat (ORL) and normal chow-fed mice (NC). Mice fed a high-fat diet showed significantly lower weight gain upon Capsimax® (CAP) administration than their HFD counterparts and similar to that observed with ORL animals. In addition, CAP decreased the high-fat diet-induced increases in adipose tissue and epididymal fat pad mass and hypertrophy after 52 days of treatment. Both the CAP and ORL groups had increased plasma concentrations of leptin. CAP extracts decreased triacylglycerol content in 3T3-L1 preadipocytes and decreased markers of adipogenesis including peroxisome proliferator-activated receptor (PPAR-ɣ) and fatty acid-binding protein 4 (FABP4). Expression of genes involved in lipogenesis such as stearoyl-CoA desaturase (SCD) and fatty acid synthase (FSN) was decreased by CAP in a dose-dependent manner. Thermogenic genes and markers of brown adipose tissue including uncoupling protein 1 (UCP1) and PR domain-containing 16 (Prdm16) were induced by CAP in the preadipocyte cells. These in vivo and in vitro data support that this proprietary capsaicinoid concentrate reduces weight gain and adiposity at least in part through decreasing lipogenesis and increasing thermogenesis.
AB - Obesity is a significant public health concern, and finding safe and effective means for combating this condition is needed. This study investigates the safety and efficacy of supplementation of a blend of capsaicinoids on weight gain, fat mass, and blood chemistry in a high-fat diet (HFD) model of obesity in mice and on adipocyte differentiation and gene expression in 3T3-L1 preadipocytes. High-fat diet (HFD)-fed mice were treated with a proprietary capsaicinoid concentrate (Capsimax®; OmniActive Health Technologies Ltd., India) and compared to orlistat (ORL) and normal chow-fed mice (NC). Mice fed a high-fat diet showed significantly lower weight gain upon Capsimax® (CAP) administration than their HFD counterparts and similar to that observed with ORL animals. In addition, CAP decreased the high-fat diet-induced increases in adipose tissue and epididymal fat pad mass and hypertrophy after 52 days of treatment. Both the CAP and ORL groups had increased plasma concentrations of leptin. CAP extracts decreased triacylglycerol content in 3T3-L1 preadipocytes and decreased markers of adipogenesis including peroxisome proliferator-activated receptor (PPAR-ɣ) and fatty acid-binding protein 4 (FABP4). Expression of genes involved in lipogenesis such as stearoyl-CoA desaturase (SCD) and fatty acid synthase (FSN) was decreased by CAP in a dose-dependent manner. Thermogenic genes and markers of brown adipose tissue including uncoupling protein 1 (UCP1) and PR domain-containing 16 (Prdm16) were induced by CAP in the preadipocyte cells. These in vivo and in vitro data support that this proprietary capsaicinoid concentrate reduces weight gain and adiposity at least in part through decreasing lipogenesis and increasing thermogenesis.
UR - http://www.scopus.com/inward/record.url?scp=85104980076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104980076&partnerID=8YFLogxK
U2 - 10.1002/fsn3.2122
DO - 10.1002/fsn3.2122
M3 - Article
C2 - 34136150
AN - SCOPUS:85104980076
SN - 2048-7177
VL - 9
SP - 2823
EP - 2835
JO - Food Science and Nutrition
JF - Food Science and Nutrition
IS - 6
ER -