TY - JOUR
T1 - Activated carbon for pharmaceutical removal at point-of-entry
AU - Finn, Michelle
AU - Giampietro, Gabrielle
AU - Mazyck, David
AU - Rodriguez, Regina
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7
Y1 - 2021/7
N2 - Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.
AB - Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.
UR - http://www.scopus.com/inward/record.url?scp=85109183699&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85109183699&partnerID=8YFLogxK
U2 - 10.3390/pr9071091
DO - 10.3390/pr9071091
M3 - Article
AN - SCOPUS:85109183699
SN - 2227-9717
VL - 9
JO - Processes
JF - Processes
IS - 7
M1 - 1091
ER -