Active quasi-BIC optical vortex generators for ultrafast switching

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

The Pancharatnam-Berry phase induced by the winding topology of polarization around a vortex singularity at bound states in the continuum (BIC) provides a unique approach to optical vortex (OV) generation. The BIC-based OV generators have the potential to outperform their counterparts that rely on spatial variations in terms of design feasibility, fabrication complexity, and robustness. However, given the fact that this class of OV generators originates from the topological property of the photonic bands, their responses are generally fixed and cannot be dynamically altered, which limits their applications to photonic systems. Here, we numerically demonstrate that a silicon photonic crystal slab can be used to realize optically switchable OV generation by simultaneously exploiting the vortex topology in momentum space in conjunction with silicon's nonlinear dynamics. Picosecond switching of OV beams at near-infrared wavelengths are observed. The demonstrated nontrivial topological nature of the active generators can significantly expand the application of BIC toward ultrafast vortex beam generation, high-capacity optical communication, and mode-division multiplexing.

Original languageEnglish (US)
Article number033002
JournalNew Journal of Physics
Volume24
Issue number3
DOIs
StatePublished - Mar 2022

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Active quasi-BIC optical vortex generators for ultrafast switching'. Together they form a unique fingerprint.

Cite this