Abstract
Research suggests that topology and build parameters in Fused Filament Fabrication (FFF) play a vital role in determining mechanical properties of parts produced by this technique. In particular, the use of 2D layers printed parallel to the build surface produces high anisotropy in parts making them the weakest when loaded perpendicular to the layer interfaces. We investigate a novel approach that uses non-planar 3D layer shapes - Active Z printing, to improve mechanical strength through alignment of localized stress tensors parallel to the deposition paths. Sinusoidal layer shapes are used with varying amplitude, frequency, and orientation. Design of experiments is performed to correlate effect of varying shape and orientation of sinusoidal layer shapes on flexural strength of parts. Based on this, the results are used to decide parameters to be studied further and characterize their effect on the strength of parts.
Original language | English (US) |
---|---|
Pages | 1627-1644 |
Number of pages | 18 |
State | Published - 2020 |
Event | 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017 - Austin, United States Duration: Aug 7 2017 → Aug 9 2017 |
Conference
Conference | 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017 |
---|---|
Country/Territory | United States |
City | Austin |
Period | 8/7/17 → 8/9/17 |
All Science Journal Classification (ASJC) codes
- Surfaces, Coatings and Films
- Surfaces and Interfaces