TY - GEN
T1 - Actuation behavior in patterned magnetorheological elastomers
T2 - ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2012
AU - Von Lockette, Paris
PY - 2012
Y1 - 2012
N2 - Magnetorheological elastomers (MREs) are an emerging class of smart materials whose mechanical behavior varies in the presence of a magnetic field. Historically MREs have been comprised of soft-magnetic iron particles in a compliant matrix such as silicone elastomer. Numerous works have experimentally cataloged the MRE effect, or increase in shear stiffness, versus the applied field. Several other researchers have derived constitutive models for the large deformation behavior of MREs. In almost all cases the arrays of embedded particles, and or the particles themselves, are assumed magnetically symmetric with respect to the external magnetic field, i.e. the bulk materials exhibit magnetic symmetry in the given experimental or analytical configuration. In this work the author presents results of dynamic shear experiments, Lagrangian dynamic analysis, and static shear simulations on MRE material systems that exhibit broken magnetic symmetry. These new materials utilize barium hexaferrite powder as the magnetically anisotropic filler combined with a compliant silicone elastomer matrix. Simulations of representative laminate structures comprised of varied arrays of magnetic particles exhibit novel actuation behaviors including reversible shearing deformation, variable magnetostriction, and most surprisingly, piezomagnetism. Results of dynamic shear experiments and analytical modeling support predicted shearing actuation responses in MREs having broken symmetry and only in those systems.
AB - Magnetorheological elastomers (MREs) are an emerging class of smart materials whose mechanical behavior varies in the presence of a magnetic field. Historically MREs have been comprised of soft-magnetic iron particles in a compliant matrix such as silicone elastomer. Numerous works have experimentally cataloged the MRE effect, or increase in shear stiffness, versus the applied field. Several other researchers have derived constitutive models for the large deformation behavior of MREs. In almost all cases the arrays of embedded particles, and or the particles themselves, are assumed magnetically symmetric with respect to the external magnetic field, i.e. the bulk materials exhibit magnetic symmetry in the given experimental or analytical configuration. In this work the author presents results of dynamic shear experiments, Lagrangian dynamic analysis, and static shear simulations on MRE material systems that exhibit broken magnetic symmetry. These new materials utilize barium hexaferrite powder as the magnetically anisotropic filler combined with a compliant silicone elastomer matrix. Simulations of representative laminate structures comprised of varied arrays of magnetic particles exhibit novel actuation behaviors including reversible shearing deformation, variable magnetostriction, and most surprisingly, piezomagnetism. Results of dynamic shear experiments and analytical modeling support predicted shearing actuation responses in MREs having broken symmetry and only in those systems.
UR - http://www.scopus.com/inward/record.url?scp=84892658372&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84892658372&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2012-8143
DO - 10.1115/SMASIS2012-8143
M3 - Conference contribution
AN - SCOPUS:84892658372
SN - 9780791845097
T3 - ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2012
SP - 177
EP - 184
BT - ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2012
Y2 - 19 September 2012 through 21 September 2012
ER -