TY - GEN
T1 - Adaptive neural network for node classification in dynamic networks
AU - Xu, Dongkuan
AU - Cheng, Wei
AU - Luo, Dongsheng
AU - Gu, Yameng
AU - Liu, Xiao
AU - Ni, Jingchao
AU - Zong, Bo
AU - Chen, Haifeng
AU - Zhang, Xiang
N1 - Funding Information:
ACKNOWLEDGEMENTS This work was partially supported by the National Science Foundation grant IIS-1707548.
Publisher Copyright:
© 2019 IEEE.
PY - 2019/11
Y1 - 2019/11
N2 - Given a network with the labels for a subset of nodes, transductive node classification targets to predict the labels for the remaining nodes in the network. This technique has been used in a variety of applications such as voxel functionality detection in brain network and group label prediction in social network. Most existing node classification approaches are performed in static networks. However, many real-world networks are dynamic and evolve over time. The dynamics of both node attributes and network topology jointly determine the node labels. In this paper, we study the problem of classifying the nodes in dynamic networks. The task is challenging for three reasons. First, it is hard to effectively learn the spatial and temporal information simultaneously. Second, the network evolution is complex. The evolving patterns lie in both node attributes and network topology. Third, for different networks or even different nodes in the same network, the node attributes, the neighborhood node representations and the network topology usually affect the node labels differently, it is desirable to assess the relative importance of different factors over evolutionary time scales. To address the challenges, we propose AdaNN, an adaptive neural network for transductive node classification. AdaNN learns node attribute information by aggregating the node and its neighbors, and extracts network topology information with a random walk strategy. The attribute information and topology information are further fed into two connected gated recurrent units to learn the spatio-temporal contextual information. Additionally, a triple attention module is designed to automatically model the different factors that influence the node representations. AdaNN is the first node classification model that is adaptive to different kinds of dynamic networks. Extensive experiments on real datasets demonstrate the effectiveness of AdaNN.
AB - Given a network with the labels for a subset of nodes, transductive node classification targets to predict the labels for the remaining nodes in the network. This technique has been used in a variety of applications such as voxel functionality detection in brain network and group label prediction in social network. Most existing node classification approaches are performed in static networks. However, many real-world networks are dynamic and evolve over time. The dynamics of both node attributes and network topology jointly determine the node labels. In this paper, we study the problem of classifying the nodes in dynamic networks. The task is challenging for three reasons. First, it is hard to effectively learn the spatial and temporal information simultaneously. Second, the network evolution is complex. The evolving patterns lie in both node attributes and network topology. Third, for different networks or even different nodes in the same network, the node attributes, the neighborhood node representations and the network topology usually affect the node labels differently, it is desirable to assess the relative importance of different factors over evolutionary time scales. To address the challenges, we propose AdaNN, an adaptive neural network for transductive node classification. AdaNN learns node attribute information by aggregating the node and its neighbors, and extracts network topology information with a random walk strategy. The attribute information and topology information are further fed into two connected gated recurrent units to learn the spatio-temporal contextual information. Additionally, a triple attention module is designed to automatically model the different factors that influence the node representations. AdaNN is the first node classification model that is adaptive to different kinds of dynamic networks. Extensive experiments on real datasets demonstrate the effectiveness of AdaNN.
UR - http://www.scopus.com/inward/record.url?scp=85078886146&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078886146&partnerID=8YFLogxK
U2 - 10.1109/ICDM.2019.00181
DO - 10.1109/ICDM.2019.00181
M3 - Conference contribution
AN - SCOPUS:85078886146
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 1402
EP - 1407
BT - Proceedings - 19th IEEE International Conference on Data Mining, ICDM 2019
A2 - Wang, Jianyong
A2 - Shim, Kyuseok
A2 - Wu, Xindong
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 19th IEEE International Conference on Data Mining, ICDM 2019
Y2 - 8 November 2019 through 11 November 2019
ER -