Adaptive sensor activity scheduling in distributed sensor networks: A statistical mechanics approach

Abhishek Srivastav, Asok Ray, Shashi Phoha

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

This article presents an algorithm for adaptive sensor activity scheduling (A-SAS) in distributed sensor networks to enable detection and dynamic footprint tracking of spatial-temporal events. The sensor network is modeled as a Markov random field on a graph, where concepts of Statistical Mechanics are employed to stochastically activate the sensor nodes. Using an Ising-like formulation, the sleep and wake modes of a sensor node are modeled as spins with ferromagnetic neighborhood interactions; and clique potentials are defined to characterize the node behavior. Individual sensor nodes are designed to make local probabilistic decisions based on the most recently sensed parameters and the expected behavior of their neighbors. These local decisions evolve to globally meaningful ensemble behaviors of the sensor network to adaptively organize for event detection and tracking. The proposed algorithm naturally leads to a distributed implementation without the need for a centralized control. The A-SAS algorithm has been validated for resource-aware target tracking on a simulated sensor field of 600 nodes.

Original languageEnglish (US)
Pages (from-to)242-261
Number of pages20
JournalInternational Journal of Distributed Sensor Networks
Volume5
Issue number3
DOIs
StatePublished - Jul 2009

All Science Journal Classification (ASJC) codes

  • General Engineering
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Adaptive sensor activity scheduling in distributed sensor networks: A statistical mechanics approach'. Together they form a unique fingerprint.

Cite this