TY - JOUR
T1 - Adaptive sensor activity scheduling in distributed sensor networks
T2 - A statistical mechanics approach
AU - Srivastav, Abhishek
AU - Ray, Asok
AU - Phoha, Shashi
PY - 2009/7
Y1 - 2009/7
N2 - This article presents an algorithm for adaptive sensor activity scheduling (A-SAS) in distributed sensor networks to enable detection and dynamic footprint tracking of spatial-temporal events. The sensor network is modeled as a Markov random field on a graph, where concepts of Statistical Mechanics are employed to stochastically activate the sensor nodes. Using an Ising-like formulation, the sleep and wake modes of a sensor node are modeled as spins with ferromagnetic neighborhood interactions; and clique potentials are defined to characterize the node behavior. Individual sensor nodes are designed to make local probabilistic decisions based on the most recently sensed parameters and the expected behavior of their neighbors. These local decisions evolve to globally meaningful ensemble behaviors of the sensor network to adaptively organize for event detection and tracking. The proposed algorithm naturally leads to a distributed implementation without the need for a centralized control. The A-SAS algorithm has been validated for resource-aware target tracking on a simulated sensor field of 600 nodes.
AB - This article presents an algorithm for adaptive sensor activity scheduling (A-SAS) in distributed sensor networks to enable detection and dynamic footprint tracking of spatial-temporal events. The sensor network is modeled as a Markov random field on a graph, where concepts of Statistical Mechanics are employed to stochastically activate the sensor nodes. Using an Ising-like formulation, the sleep and wake modes of a sensor node are modeled as spins with ferromagnetic neighborhood interactions; and clique potentials are defined to characterize the node behavior. Individual sensor nodes are designed to make local probabilistic decisions based on the most recently sensed parameters and the expected behavior of their neighbors. These local decisions evolve to globally meaningful ensemble behaviors of the sensor network to adaptively organize for event detection and tracking. The proposed algorithm naturally leads to a distributed implementation without the need for a centralized control. The A-SAS algorithm has been validated for resource-aware target tracking on a simulated sensor field of 600 nodes.
UR - http://www.scopus.com/inward/record.url?scp=70449637984&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70449637984&partnerID=8YFLogxK
U2 - 10.1080/15501320802473250
DO - 10.1080/15501320802473250
M3 - Article
AN - SCOPUS:70449637984
SN - 1550-1329
VL - 5
SP - 242
EP - 261
JO - International Journal of Distributed Sensor Networks
JF - International Journal of Distributed Sensor Networks
IS - 3
ER -