TY - JOUR
T1 - Adaptive steganography and steganalysis with fixed-size embedding
AU - Johnson, Benjamin
AU - Schöttle, Pascal
AU - Laszka, Aron
AU - Grossklags, Jens
AU - Böhme, Rainer
N1 - Publisher Copyright:
© Springer-Verlag Berlin Heidelberg 2015
PY - 2015
Y1 - 2015
N2 - We analyze a two-player zero-sum game between a steganographer, Alice, and a steganalyst, Eve. In this game, Alice wants to hide a secret message of length k in a binary sequence, and Eve wants to detect whether a secret message is present. The individual positions of all binary sequences are independently distributed, but have different levels of predictability. Using knowledge of this distribution, Alice randomizes over all possible size-k subsets of embedding positions. Eve uses an optimal (possibly randomized) decision rule that considers all positions, and incorporates knowledge of both the sequence distribution and Alice’s embedding strategy. Our model extends prior work by removing restrictions on Eve’s detection power.We give defining formulas for each player’s best response strategy and minimax strategy; and we present additional structural constraints on the game’s equilibria. For the special case of length-two binary sequences, we compute explicit equilibria and provide numerical illustrations.
AB - We analyze a two-player zero-sum game between a steganographer, Alice, and a steganalyst, Eve. In this game, Alice wants to hide a secret message of length k in a binary sequence, and Eve wants to detect whether a secret message is present. The individual positions of all binary sequences are independently distributed, but have different levels of predictability. Using knowledge of this distribution, Alice randomizes over all possible size-k subsets of embedding positions. Eve uses an optimal (possibly randomized) decision rule that considers all positions, and incorporates knowledge of both the sequence distribution and Alice’s embedding strategy. Our model extends prior work by removing restrictions on Eve’s detection power.We give defining formulas for each player’s best response strategy and minimax strategy; and we present additional structural constraints on the game’s equilibria. For the special case of length-two binary sequences, we compute explicit equilibria and provide numerical illustrations.
UR - http://www.scopus.com/inward/record.url?scp=84928330749&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928330749&partnerID=8YFLogxK
U2 - 10.1007/978-3-662-46739-8_5
DO - 10.1007/978-3-662-46739-8_5
M3 - Article
AN - SCOPUS:84928330749
SN - 0302-9743
VL - 8948
SP - 69
EP - 91
JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
JF - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ER -