Adaptive stochastic cellular automata: Applications

S. Qian, Y. C. Lee, R. D. Jones, C. W. Barnes, G. W. Flake, M. K. O'Rourke, K. Lee, H. H. Chen, G. Z. Sun, Y. Q. Zhang, D. Chen, C. L. Giles

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

Original languageEnglish (US)
Pages (from-to)181-188
Number of pages8
JournalPhysica D: Nonlinear Phenomena
Issue number1-3
StatePublished - Sep 2 1990

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Condensed Matter Physics
  • Applied Mathematics


Dive into the research topics of 'Adaptive stochastic cellular automata: Applications'. Together they form a unique fingerprint.

Cite this