TY - JOUR
T1 - Additive correlation and the inverse problem for the large sieve
AU - Hanson, Brandon
N1 - Publisher Copyright:
Copyright © Cambridge Philosophical Society 2018.
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Let A [1, N] be a set of integers with |A| ≫. We show that if A avoids about p/2 residue classes modulo p for each prime p, then A must correlate additively with the squares S = {n2 : 1 ≤ n ≤ }, in the sense that we have the additive energy estimate This is, in a sense, optimal.
AB - Let A [1, N] be a set of integers with |A| ≫. We show that if A avoids about p/2 residue classes modulo p for each prime p, then A must correlate additively with the squares S = {n2 : 1 ≤ n ≤ }, in the sense that we have the additive energy estimate This is, in a sense, optimal.
UR - http://www.scopus.com/inward/record.url?scp=85049616675&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049616675&partnerID=8YFLogxK
U2 - 10.1017/S0305004118000518
DO - 10.1017/S0305004118000518
M3 - Article
AN - SCOPUS:85049616675
SN - 0305-0041
VL - 168
SP - 211
EP - 217
JO - Mathematical Proceedings of the Cambridge Philosophical Society
JF - Mathematical Proceedings of the Cambridge Philosophical Society
IS - 2
ER -