TY - GEN
T1 - Adjustable adaboost classifier and pyramid features for image-based cervical cancer diagnosis
AU - Xu, Tao
AU - Kim, Edward
AU - Huang, Xiaolei
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/7/21
Y1 - 2015/7/21
N2 - Cervical cancer is the third most common type of cancer in women worldwide. Most death cases of cervical cancer occur in less developed areas of the world. In this work, we develop an automated and low-cost method that is applicable in those low-resource regions. First, we propose a more distinctive multi-feature descriptor for encoding the cervical image information by enhancing an existing descriptor with the pyramid histogram of local binary pattern (PLBP) feature. Second, we apply the AdaBoost algorithm to perform feature selection, and train a binary classifier to differentiate high-risk patient visits from low-risk patient visits. Our AdaBoost classifier can be adjusted to achieve high specificity, which is necessary for use in clinical practice. Experiments on both balanced and imbalanced datasets are conducted to evaluate the effectiveness of our method. Our method is shown to achieve better performance than existing image-based CIN classification systems and also outperform human interpretations on various screening tests.
AB - Cervical cancer is the third most common type of cancer in women worldwide. Most death cases of cervical cancer occur in less developed areas of the world. In this work, we develop an automated and low-cost method that is applicable in those low-resource regions. First, we propose a more distinctive multi-feature descriptor for encoding the cervical image information by enhancing an existing descriptor with the pyramid histogram of local binary pattern (PLBP) feature. Second, we apply the AdaBoost algorithm to perform feature selection, and train a binary classifier to differentiate high-risk patient visits from low-risk patient visits. Our AdaBoost classifier can be adjusted to achieve high specificity, which is necessary for use in clinical practice. Experiments on both balanced and imbalanced datasets are conducted to evaluate the effectiveness of our method. Our method is shown to achieve better performance than existing image-based CIN classification systems and also outperform human interpretations on various screening tests.
UR - http://www.scopus.com/inward/record.url?scp=84944314759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84944314759&partnerID=8YFLogxK
U2 - 10.1109/ISBI.2015.7163868
DO - 10.1109/ISBI.2015.7163868
M3 - Conference contribution
AN - SCOPUS:84944314759
T3 - Proceedings - International Symposium on Biomedical Imaging
SP - 281
EP - 285
BT - 2015 IEEE 12th International Symposium on Biomedical Imaging, ISBI 2015
PB - IEEE Computer Society
T2 - 12th IEEE International Symposium on Biomedical Imaging, ISBI 2015
Y2 - 16 April 2015 through 19 April 2015
ER -