Abstract
We report on experimental studies of NH3 adsorption/desorption on graphene surfaces. The study employs bottom-gated graphene field effect transistors supported on Si/SiO2 substrates. Detection of NH 3 occurs through the shift of the source-drain resistance maximum ('Dirac peak') with the gate voltage. The observed shift of the Dirac peak toward negative gate voltages in response to NH3 exposure is consistent with a small charge transfer (f∼0.068 0.004 electrons per molecule at pristine sites) from NH3 to graphene. The desorption kinetics involves a very rapid loss of NH3 from the top surface and a much slower removal from the bottom surface at the interface with the SiO 2 that we identify with a Fickian diffusion process.
Original language | English (US) |
---|---|
Article number | 245501 |
Journal | Nanotechnology |
Volume | 20 |
Issue number | 24 |
DOIs | |
State | Published - 2009 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- General Chemistry
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering