Advanced piezoelectric single crystal based transducers for naval sonar applications

Kevin A. Snook, Paul W. Rehrig, Wesley S. Hackenberger, Xiaoning Jiang, Richard J. Meyer, Douglas Markley

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Transducers incorporating single crystal piezoelectric Pb(Mg 1/3Nb 2/3) x-1]Ti xO 3 (PMN-PT) exhibit significant advantages over ceramic piezoelectrics such as PZT, including both high electromechanical coupling (k 33 > 90%) and piezoelectric coefficients (d 33 > 2000 pC/N). Conventional 〈001〉 orientation gives inherently larger bandwidth and output power than PZT ceramics, however, the anisotropy of the crystal also allows for tailoring of the performance by orienting the crystal along different crystallographic axes. This attribute combined with composition refinements can be used to improve thermal or mechanical stability, which is important in high power, high duty cycle sonar applications. By utilizing the "31" resonance mode, the high power performance of PMN-PT can be improved over traditional "33" mode single crystal transducers, due to an improved aspect ratio. Utilizing novel geometries, effective piezoelectric constants of -600 pC/N to -1200 pC/N have been measured. The phase transition point induced by temperature, pre-stress or field is close to that in the "33" mode, and since the prestress is applied perpendicular to the poling direction in "31" mode elements, they exhibit lower loss and can therefore be driven harder. The high power characteristics of tonpilz transducers can also be affected by the composition of the PMN-PT crystal. TRS modified the composition of PMN-PT to improve the thermal stability of the material, while keeping the loss as low as possible. Three dimensional modeling shows that the useable bandwidth of these novel compositions nearly equals that of conventional PMN-PT. A decrease in the source level of up to 6 dB was calculated, which can be compensated for by the higher drive voltages possible.

Original languageEnglish (US)
Title of host publicationSmart Structures and Materials 2006 - Active Materials
Subtitle of host publicationBehavior and Mechanics
DOIs
StatePublished - Oct 16 2006
EventSmart Structures and Materials 2006 - Active Materials: Behavior and Mechanics - San Diego, CA, United States
Duration: Feb 27 2006Mar 2 2006

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume6170
ISSN (Print)0277-786X

Other

OtherSmart Structures and Materials 2006 - Active Materials: Behavior and Mechanics
Country/TerritoryUnited States
CitySan Diego, CA
Period2/27/063/2/06

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Advanced piezoelectric single crystal based transducers for naval sonar applications'. Together they form a unique fingerprint.

Cite this